cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175398 Sequence of resulting numbers after iterations of {((((D_1^D_2)^D_3)^D_4)^... )^D_k, where D_k is the k-th digit D of the number r and k is the digit number of the number r in the decimal expansion of r (A055642)} needed to reach a one-digit number starting at r = n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 1, 9, 1, 1, 1, 9, 1, 3, 9, 1, 8, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Jaroslav Krizek, May 01 2010

Keywords

Comments

a(n) = 1 - 9 for infinitely many n.
E.g., a(n) = b (b = 1, 2, ..., 9) for numbers n = b*10^k + A002275(k), where k >= 1.
a(n) = 1 for numbers n such that A055642(A133500(n)) = 1 for n >= 1, e.g., if the number n starts with a digit 1 or contains a digit 0 or for n >= 1.
Sequences after k steps of defined iteration (k >= 0):
0th step: A001477: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, ...
1st step: A133500: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, ...
2nd step: A175399: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 1, 9, 1296, 1, 1073741824, 25, 1, 3, 9, 128, 8, 4096, 1628413597910449, 72057594037927936, 221073919720733357899776, 1, 1, 4, 1, 1296, 1073741824, 1, 1, 1, ...
3rd step: A175400: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 1, 9, 1, 1, 1, 32, 1, 3, 9, 1, 8, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
4th step: A175401: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 1, 9, 1, 1, 1, 9, 1, 3, 9, 1, 8, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
See A175402 and A175403.

Examples

			For n = 29: a(29) = 9 because for the number 29 there are 4 steps of defined iteration: {2^9 = 512}, {(5^1)^2 = 25}, {2^5 = 32}, {3^2 = 9}. Resulting number is 9.