A216268 Tetrahedral numbers of the form k^2 - 1.
0, 35, 120, 2024, 2600, 43680, 435730689800
Offset: 1
Programs
-
Maple
select(t -> issqr(t+1), [seq(i*(i+1)*(i+2)/6, i=0..10^6)]); # Robert Israel, Jan 02 2024
-
Mathematica
t = {}; Do[tet = n (n + 1) (n + 2)/6; If[IntegerQ[Sqrt[tet + 1]], AppendTo[t, tet]], {n, 0, 100000}]; t (* T. D. Noe, Mar 18 2013 *)
-
PARI
A000292(n) = n*(n+1)*(n+2)\6; for(n=0,10^9, t=A000292(n); if (issquare(t+1), print1(t,", ") ) ); /* Joerg Arndt, Mar 16 2013 */
-
Python
import math for i in range(1<<33): t = i*(i+1)*(i+2)//6 + 1 sr = math.isqrt(t) if sr*sr == t: print (t-1, sep=' ')
Comments