A175493 a(n) = Product_{k=1..n} k^d(k), where d(k) = number of divisors of k.
1, 4, 36, 2304, 57600, 74649600, 3657830400, 14982473318400, 10922223049113600, 109222230491136000000, 13215889889427456000000, 39462435755592152776704000000, 6669151642695073819262976000000, 256202129505773955840806486016000000
Offset: 1
Keywords
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..117
Programs
-
Mathematica
f[n_] := Product[ k^DivisorSigma[0, k], {k, n}]; Array[f, 15] (* Robert G. Wilson v, Jun 11 2010 *)
-
PARI
a(n) = prod(k=1, n, k^numdiv(k)); \\ Michel Marcus, May 03 2022
-
Python
from sympy import divisor_count from itertools import count, islice def agen(): an = 1 for k in count(2): yield an an *= k**divisor_count(k) print(list(islice(agen(), 14))) # Michael S. Branicky, May 03 2022
Extensions
a(6) onwards from Robert G. Wilson v and Jon E. Schoenfield, Jun 11 2010
a(14) and beyond from Michael S. Branicky, May 03 2022
Comments