cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175493 a(n) = Product_{k=1..n} k^d(k), where d(k) = number of divisors of k.

Original entry on oeis.org

1, 4, 36, 2304, 57600, 74649600, 3657830400, 14982473318400, 10922223049113600, 109222230491136000000, 13215889889427456000000, 39462435755592152776704000000, 6669151642695073819262976000000, 256202129505773955840806486016000000
Offset: 1

Views

Author

Leroy Quet, May 30 2010

Keywords

Comments

a(n) = a(n-1)*A062758(n).
a(n) = Product_{k=1..n} k^floor(n/k) * (floor(n/k))!.

Crossrefs

Cf. A062758.
Cf. A174939 (sum instead of product).

Programs

  • Mathematica
    f[n_] := Product[ k^DivisorSigma[0, k], {k, n}]; Array[f, 15] (* Robert G. Wilson v, Jun 11 2010 *)
  • PARI
    a(n) = prod(k=1, n, k^numdiv(k)); \\ Michel Marcus, May 03 2022
  • Python
    from sympy import divisor_count
    from itertools import count, islice
    def agen():
        an = 1
        for k in count(2):
            yield an
            an *= k**divisor_count(k)
    print(list(islice(agen(), 14))) # Michael S. Branicky, May 03 2022
    

Extensions

a(6) onwards from Robert G. Wilson v and Jon E. Schoenfield, Jun 11 2010
a(14) and beyond from Michael S. Branicky, May 03 2022