cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175505 Numerator of A053818(n)/A023896(n) = antiharmonic mean of numbers k such that gcd(k,n) = 1, 1 <= k < n.

Original entry on oeis.org

1, 1, 5, 5, 3, 13, 13, 21, 53, 7, 7, 49, 25, 29, 31, 85, 11, 109, 37, 27, 43, 15, 15, 193, 83, 53, 485, 113, 19, 59, 61, 341, 67, 23, 71, 433, 73, 77, 79, 107, 27, 83, 85, 59, 271, 31, 31, 769, 685, 167, 103, 209, 35, 973, 37, 449, 115, 39, 39, 239, 121, 125, 379, 1365
Offset: 1

Views

Author

Jaroslav Krizek, May 31 2010, Jun 01 2010

Keywords

Comments

See A175506 - denominators of the antiharmonic means B of numbers k such that gcd(k, n) = 1 for numbers n >= 1 and k < n where B = A053818(n) / A023896(n) = a(n) / A175506(n).

Crossrefs

Cf. A023896, A053818, A175506 (denominators).

Programs

  • Maple
    antiHMean := proc(L)
        add(i^2,i=L)/add(i,i=L) ;
    end proc:
    A175505 := proc(n)
        local kset,k ;
        kset := [1] ;
        for k from 2 to n do
            if igcd(k,n) = 1 then
                kset := [op(kset),k] ;
            end if;
        end do:
        antiHMean(kset) ;
        numer(%) ;
    end proc: # R. J. Mathar, Sep 26 2013
  • Mathematica
    f[n_] := 2Plus @@ (Select[ Range@n, GCD[ #, n] == 1 &]^2)/(n*EulerPhi@n); f[1] = 1; Numerator@Array[f, 65] (* Robert G. Wilson v, Jul 01 2010 *)
  • PARI
    A175505(n)=numerator((2*n+(-1)^omega(n)*A007947(n)/n)/3) \\ M. F. Hasler, Nov 29 2010
    
  • PARI
    a(n) = {my(f = factor(n)); numerator(if(n == 1, 1, 2*n/3 + (1/3) * prod(i = 1, #f~, 1 - f[i, 1])/eulerphi(f)));} \\ Amiram Eldar, Dec 07 2023

Formula

a(n) = A053818(n) * A175506(n) / A023896(n).
Sum_{k=1..n} a(k)/A175506(k) ~ n^2/3. - Amiram Eldar, Dec 07 2023

Extensions

More terms from Robert G. Wilson v, Jul 01 2010