A175513 Numbers k for which 6k+1, 24k+5, 432k^2+72k-1, and 432k^2+90k-1 are all prime.
1, 2, 13, 753, 767, 1336, 1771, 1773, 1911, 2487, 3527, 4192, 5061, 5343, 5973, 6341, 7062, 7777, 8932, 9153, 15301, 17976, 18713, 19543, 20318, 22253, 24068, 27461, 29416, 29502, 31383, 31593, 31616, 31693, 36026, 36087, 41456, 42966, 44711, 45453, 45493, 46766, 49067, 50602, 51212, 51393, 53193, 56762, 58267, 60332, 60918, 64126, 65727, 67872, 71266, 72011, 75861, 78728, 79652, 82978, 85246, 86207, 86988, 87793, 90873, 91753, 94173, 97297
Offset: 1
Keywords
References
- C. Nelson, D. E. Penney and C. Pomerance, "714 and 715", J. Recreational Math. 7 (No. 2) 1974, 87-89.
Links
Crossrefs
Cf. A039752.
Programs
-
Mathematica
Select[Range[100000], PrimeQ[6 # + 1] && PrimeQ[24 # + 5] && PrimeQ[432*#^2 + 72*# - 1] && PrimeQ[432 #^2 + 90 # - 1] &] Select[Range[100000],AllTrue[{6#+1,24#+5,432#^2+72#-1,432#^2+90#-1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 24 2019 *)
Comments