cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175513 Numbers k for which 6k+1, 24k+5, 432k^2+72k-1, and 432k^2+90k-1 are all prime.

Original entry on oeis.org

1, 2, 13, 753, 767, 1336, 1771, 1773, 1911, 2487, 3527, 4192, 5061, 5343, 5973, 6341, 7062, 7777, 8932, 9153, 15301, 17976, 18713, 19543, 20318, 22253, 24068, 27461, 29416, 29502, 31383, 31593, 31616, 31693, 36026, 36087, 41456, 42966, 44711, 45453, 45493, 46766, 49067, 50602, 51212, 51393, 53193, 56762, 58267, 60332, 60918, 64126, 65727, 67872, 71266, 72011, 75861, 78728, 79652, 82978, 85246, 86207, 86988, 87793, 90873, 91753, 94173, 97297
Offset: 1

Views

Author

Hans Havermann, Dec 03 2010

Keywords

Comments

10368k^3+3888k^2+336k-5 is a Ruth-Aaron number (2, A039752).

References

  • C. Nelson, D. E. Penney and C. Pomerance, "714 and 715", J. Recreational Math. 7 (No. 2) 1974, 87-89.

Crossrefs

Cf. A039752.

Programs

  • Mathematica
    Select[Range[100000], PrimeQ[6 # + 1] && PrimeQ[24 # + 5] && PrimeQ[432*#^2 + 72*# - 1] && PrimeQ[432 #^2 + 90 # - 1] &]
    Select[Range[100000],AllTrue[{6#+1,24#+5,432#^2+72#-1,432#^2+90#-1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 24 2019 *)