cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175525 Numbers k that divide the sum of digits of 13^k.

Original entry on oeis.org

1, 2, 5, 140, 158, 428, 788, 887, 914, 1814, 1895, 1976, 2579, 2732, 3074, 3299, 3641, 4658, 4874, 5378, 5423, 5504, 6170, 6440, 6944, 8060, 8249, 8915, 9041, 9158, 9725, 9824, 10661, 11291, 13820, 15305, 17051, 17393, 18716, 19589, 20876, 21641, 23756, 24188, 25961, 28409, 30632, 31307, 32387, 33215, 34970, 35240, 36653, 36977, 41558, 43970, 44951, 47444, 51764, 52655, 53375, 53852, 54104, 56831, 57506, 59153, 66479, 68063, 73562, 78485, 79286, 87908, 92093, 102029, 106934, 114854, 116321, 134051, 139397, 184037, 192353, 256469, 281381, 301118, 469004
Offset: 1

Views

Author

T. D. Noe, Dec 03 2010

Keywords

Comments

Almost certainly there are no further terms.
Comments from Donovan Johnson on the computation of this sequence, Dec 05 2010 (Start):
The number of digits of 13^k is approximately 1.114*k, so I defined an array d() that is a little bigger than 1.114 times the maximum k value to be checked. The elements of d() each are the value of a single digit of the decimal expansion of 13^k with d(1) being the least significant digit.
It's easier to see how the program works if I start with k = 2.
For k = 1, d(2) would have been set to 1 and d(1) would have been set to 3.
k = 2:
x = 13*d(1) = 13*3 = 39
y = 39\10 = 3 (integer division)
x-y*10 = 39-30 = 9, d(1) is set to 9
x = 13*d(2)+y = 13*1+3 = 16, y is the carry from previous digit
y = 16\10 = 1
x-y*10 = 16-10 = 6, d(2) is set to 6
x = 13*d(3)+y = 13*0+1 = 1, y is the carry from previous digit
y = 1\10 = 0
x-y*10 = 1-0 = 1, d(3) is set to 1
These steps would of course be inside a loop and that loop would be inside a k loop. A pointer to the most significant digit increases usually by one and sometimes by two for each successive k value checked. The number of steps of the inner loop is the size of the pointer. A scan is done from the first element to the pointer element to get the digit sum.
(End)
No other terms < 3*10^6. - Donovan Johnson, Dec 07 2010

Crossrefs

Sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552.

Programs

  • Mathematica
    Select[Range[1000], Mod[Total[IntegerDigits[13^#]], #] == 0 &]

Extensions

a(47)-a(79) from N. J. A. Sloane, Dec 04 2010
a(80)-a(85) from Donovan Johnson, Dec 05 2010