A175572 Decimal expansion of the Dirichlet beta function of 4.
9, 8, 8, 9, 4, 4, 5, 5, 1, 7, 4, 1, 1, 0, 5, 3, 3, 6, 1, 0, 8, 4, 2, 2, 6, 3, 3, 2, 2, 8, 3, 7, 7, 8, 2, 1, 3, 1, 5, 8, 6, 0, 8, 8, 7, 0, 6, 2, 7, 3, 3, 9, 1, 0, 7, 8, 1, 9, 9, 2, 4, 0, 1, 6, 3, 9, 0, 1, 5, 1, 9, 4, 6, 9, 8, 0, 1, 8, 1, 9, 6, 4, 1, 1, 9, 1, 0, 4, 6, 8, 9, 9, 9, 7, 9, 9, 9, 3, 3, 7, 8, 5, 6, 2, 1
Offset: 0
Examples
0.988944551741105336108422633...
References
- L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (308).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Mark W. Coffey, Summatory relations and prime products for the Stieltjes constants and other related results, arXiv:1701.07064, proposition 5.
- Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
- Eric Weisstein's World of Mathematics, Dirichlet Beta Function.
- Wikipedia, Dirichlet beta function.
Crossrefs
Programs
-
Maple
DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(4) ; x := evalf(x) ;
-
Mathematica
RealDigits[ DirichletBeta[4], 10, 105] // First (* Jean-François Alcover, Feb 11 2013, updated Mar 14 2018 *)
-
PARI
beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x beta(4) \\ Charles R Greathouse IV, Jan 31 2018
Formula
Equals Sum_{n>=1} A101455(n)/n^4. [corrected by R. J. Mathar, Feb 01 2018]
Equals (PolyGamma(3, 1/4) - PolyGamma(3, 3/4))/1536. - Jean-François Alcover, Jun 11 2015
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^4)^(-1). - Amiram Eldar, Nov 06 2023
Comments