cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175590 Numbers k with prime signature(k) = prime signature(k+1) = prime signature(k+2) = prime signature(k+3).

Original entry on oeis.org

19940, 49147, 54585, 118923, 136825, 183554, 204323, 204324, 262932, 304675, 361275, 361322, 476377, 486962, 506905, 619722, 668211, 734948, 854018, 937025, 938203, 999649, 1062025, 1118275, 1335572, 1336075, 1356324, 1466225, 1541491
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 2^2 * 5 * 997; a(1)+1 = 3 * 17^2 * 23; a(1)+2 = 2 * 13^2 * 59; a(1)+3 = 7^2 * 11 * 37. All have prime signature {2, 1, 1}.
		

Crossrefs

Cf. A052213, A052214, A218448. Subsequence of A070284.

Programs

  • Mathematica
    SequencePosition[Table[Sort[FactorInteger[n][[All,2]]],{n,1542000}],{x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* The program will take a long time to run. *) (* Harvey P. Dale, Jun 09 2021 *)
  • PARI
    sig(n)={vecsort(factor(n)[,2])}; s=sig(1);for(n=1,1e6,t=sig(n+1);if(s==t&t==sig(n+2)&t==sig(n+3),print1(n-1,","));s=t)
    
  • PARI
    is_A175590(n)={my(f(n)=vecsort(factor(n)[,2]),t=f(n));!for(i=1,3,f(n+i)!=t & return)}  \\ M. F. Hasler, Nov 01 2012