cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175639 Decimal expansion of Product_{p prime} (1-3/p^3+2/p^4+1/p^5-1/p^6).

Original entry on oeis.org

6, 7, 8, 2, 3, 4, 4, 9, 1, 9, 1, 7, 3, 9, 1, 9, 7, 8, 0, 3, 5, 5, 3, 8, 2, 7, 9, 4, 8, 2, 8, 9, 4, 8, 1, 4, 0, 9, 6, 3, 3, 2, 2, 3, 9, 1, 8, 9, 4, 4, 0, 1, 0, 3, 0, 3, 6, 4, 6, 0, 4, 1, 5, 9, 6, 4, 9, 8, 3, 3, 7, 0, 7, 4, 0, 1, 2, 3, 2, 3, 3, 2, 1, 3, 7, 6, 2, 1, 2, 2, 9, 3, 3, 4, 8, 4, 6, 1, 6, 8, 8, 8, 3, 2, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

Equals (49/64)*(668/729)*(15304/15625)*(116724/117649)*... inserting p= A000040 = 2, 3, 5, 7.. into the factor. Slightly larger than Product_{p=primes} (1-3/p^3) = 0.534566872085103888416775...

Examples

			0.678234491917391978035...
		

Crossrefs

Programs

  • Maple
    read("transforms") : efact := 1-3/p^3+2/p^4+1/p^5-1/p^6 ; Digits := 130 : tm := 310 : subs (p=1/x,1/efact) ; taylor(%,x=0,tm) : L := [seq(coeftayl(%,x=0,i),i=1..tm-1)] : Le := EULERi(L) : x := 1.0 :
    for i from 2 to nops(Le) do x := x/evalf(Zeta(i))^op(i,Le) ; x := evalf(x) ; print(x) ; end do:
  • Mathematica
    digits = 105; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s];
    LR = LinearRecurrence[{0, 0, 3, -2, -1, 1}, {0, 0, -9, 8, 5, -33}, 2 m0];
    r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[r[n] PrimeZetaP[n]/n, {n, 3, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-3/p^3+2/p^4+1/p^5-1/p^6) \\ Amiram Eldar, Mar 04 2021

Extensions

More digits from Jean-François Alcover, Apr 15 2016