cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175644 Decimal expansion of the sum 1/p^2 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 3, 3, 2, 1, 5, 5, 5, 0, 3, 2, 2, 2, 1, 7, 9, 5, 0, 5, 5, 2, 9, 2, 7, 1, 7, 7, 7, 8, 0, 1, 3, 8, 0, 9, 6, 4, 8, 1, 0, 8, 7, 5, 6, 6, 6, 5, 3, 2, 6, 6, 8, 3, 0, 5, 7, 3, 2, 8, 8, 5, 6, 6, 2, 4, 6, 2, 6, 8, 3, 6, 7, 2, 4, 1, 5, 4, 3, 4, 2, 8, 9, 8, 8, 9, 4, 4, 1, 7, 3, 9, 9, 4, 4, 1, 7, 0, 5, 8, 1, 5, 9, 7, 4, 4, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The prime zeta modulo function at 2 for primes of the form 3k+1, which is P_{3,2}(2) = Sum_{p in A002476} 1/p^2 = 1/7^2 + 1/13^2 + 1/19^2 + 1/31^2 + ...
The complementary Sum_{p in A003627} 1/p^2 is given by P_{3,2}(2) = A085548 - 1/3^2 - (this value here) = 0.307920758607736436842505075940... = A343612.

Examples

			P_{3,1}(2) = 0.03321555032221795055292717778013809648108756665...
		

Crossrefs

Cf. A086032 (P_{4,1}(2): same for p==1 (mod 4)), A175645 (P_{3,1}(3): same for 1/p^3), A343612 (P_{3,2}(2): same for p==2 (mod 3)), A085548 (PrimeZeta(2)).

Programs

  • Mathematica
    With[{s=2}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* Vaclav Kotesovec, Jan 13 2021 *)
    digits = 1003;
    m = 100; (* initial value of n beyond which summand is considered negligible *)
    dm = 100; (* increment of m *)
    P[s_, m_] (* "P" short name for "PrimeZeta31" *):= P[s, m] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1]* ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, m}] // N[#, digits+10]&;
    P[2, m]; P[2, m += dm];
    While[ RealDigits[P[2,    m]][[1]][[1;;digits]] !=
           RealDigits[P[2, m-dm]][[1]][[1;;digits]], Print["m = ", m]; m+=dm];
    Join[{0}, RealDigits[P[2, m]][[1]][[1;;digits]]] (* Jean-François Alcover, Jun 24 2022, after Vaclav Kotesovec *)
  • PARI
    my(s=0); forprimestep(p=1, 1e8, 3, s+=1./p^2); s \\ For illustration: primes up to 10^N give only about 2N+2 (= 18 for N=8) correct digits. - M. F. Hasler, Apr 23 2021
    
  • PARI
    PrimeZeta31(s)=suminf(n=0,my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t,1/6)-zetahurwitz(t,5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2)) \\ Inspired from Kotesovec's Mmca code
    A175644_upto(N=100)={localprec(N+5);digits((PrimeZeta31(2)+1)\.1^N)[^1]} \\ M. F. Hasler, Apr 23 2021

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020