A175669 Triangle of numerators of coefficients of the polynomial Q^(2)m(n) defined by the recursion Q^(2)_0(n)=1; for m>=1, Q^(2)_m(n) = Sum{i=1..n} i^2*Q^(2)_(m-1)(i). For m>=0, the denominator for all 3*m+1 terms of the m-th row is A202367(m+1).
1, 2, 3, 1, 0, 20, 96, 155, 90, 5, -6, 0, 280, 2772, 10518, 18711, 14385, 1323, -2863, -126, 360, 0, 2800, 47040, 323336, 1157760, 2238855, 2050020, 207158, -810600, -58505, 322740, 7956, -45360, 0, 12320, 314160, 3409472, 20401128, 72418826, 150057435, 154651321, 12413874, -101524412, -6408765, 82588957, 3394248, -37374084, -546480, 5443200, 0
Offset: 0
Examples
The sequence of polynomials begins: Q^(2)_0=1, Q^(2)_1=(2*x^3+3*x^2+x)/6, Q^(2)_2=(20*x^6+96*x^5+155*x^4+90*x^3+5*x^2-6*x)/360, Q^(2)_3=(280*x^9+2772*x^8+10518*x^7+18711*x^6+14385*x^5+1323*x^4-2863*x^3 -126*x^2+360*x)/45360.
Formula
Q^(2)_n(1)=1.
Comments