A175685 Array a(n,m) = Sum_{j=floor((n-1)/2)-m..floor(n-1)/2} binomial(n-j-1,j) read by antidiagonals.
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 3, 4, 3, 2, 1, 1, 1, 7, 5, 3, 2, 1, 1, 4, 7, 8, 5, 3, 2, 1, 1, 1, 14, 12, 8, 5, 3, 2, 1, 1
Offset: 1
Examples
a(n,m) starts in row n=1 as 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... 1, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, ... 3, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, ... 1, 7, 12, 13, 13, 13, 13, 13, 13, 13, 13, ... 4, 14, 20, 21, 21, 21, 21, 21, 21, 21, 21, ... 1, 11, 26, 33, 34, 34, 34, 34, 34, 34, 34, ...
References
- Burton, David M., Elementary number theory, McGraw Hill, N.Y., 2002, p. 286.
Programs
-
Maple
A175685 := proc(n,m) upl := floor( (n-1)/2) ; add( binomial(n-j-1,j),j=upl-m .. upl) ; end proc: # R. J. Mathar, Dec 05 2010
-
Mathematica
a = Table[Table[Sum[Binomial[n -j - 1, j], {j, Floor[(n - 1)/2] - m, Floor[(n - %t 1)/2]}], {n, 0, 10}], {m, 0, 10}]; Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 1, 10}];Flatten[%]
Comments