cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175685 Array a(n,m) = Sum_{j=floor((n-1)/2)-m..floor(n-1)/2} binomial(n-j-1,j) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 3, 4, 3, 2, 1, 1, 1, 7, 5, 3, 2, 1, 1, 4, 7, 8, 5, 3, 2, 1, 1, 1, 14, 12, 8, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Roger L. Bagula, Dec 04 2010

Keywords

Comments

A102426 defines an array of binomials in which partial sums of row n yield row a(n,.).

Examples

			a(n,m) starts in row n=1 as
  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
  2,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3, ...
  1,  4,  5,  5,  5,  5,  5,  5,  5,  5,  5, ...
  3,  7,  8,  8,  8,  8,  8,  8,  8,  8,  8, ...
  1,  7, 12, 13, 13, 13, 13, 13, 13, 13, 13, ...
  4, 14, 20, 21, 21, 21, 21, 21, 21, 21, 21, ...
  1, 11, 26, 33, 34, 34, 34, 34, 34, 34, 34, ...
		

References

  • Burton, David M., Elementary number theory, McGraw Hill, N.Y., 2002, p. 286.

Crossrefs

Programs

  • Maple
    A175685 := proc(n,m) upl := floor( (n-1)/2) ; add( binomial(n-j-1,j),j=upl-m .. upl) ; end proc: # R. J. Mathar, Dec 05 2010
  • Mathematica
    a = Table[Table[Sum[Binomial[n -j - 1, j], {j, Floor[(n - 1)/2] - m, Floor[(n - %t 1)/2]}], {n, 0, 10}], {m, 0, 10}];
    Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 1, 10}];Flatten[%]