A175723 a(1)=a(2)=1; thereafter a(n) = gpf(a(n-1)+a(n-2)), where gpf = "greatest prime factor".
1, 1, 2, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5
Offset: 1
Keywords
Links
- G. Back and M. Caragiu, The greatest prime factor and recurrent sequences, Fib. Q., 48 (2010), 358-362.
Crossrefs
Programs
-
Mathematica
nxt[{a_,b_}]:={b,FactorInteger[a+b][[-1,1]]}; Transpose[NestList[nxt,{1,1},120]][[1]] (* or *) PadRight[{1,1,2},130,{5,2,7,3}] (* Harvey P. Dale, Feb 24 2015 *)
Comments