cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A207006 Numbers n such that omega(n) = omega(n + omega(n)) where omega(n) is the number of distinct primes dividing n.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 10, 12, 16, 18, 20, 22, 24, 26, 31, 33, 34, 36, 38, 44, 46, 48, 50, 52, 54, 55, 56, 63, 72, 74, 75, 80, 85, 86, 91, 92, 93, 94, 96, 98, 102, 104, 106, 115, 116, 117, 122, 127, 133, 134, 141, 142, 143, 144, 145, 146, 153, 158, 159, 160, 162
Offset: 1

Views

Author

Michel Lagneau, Feb 14 2012

Keywords

Comments

omega is the function in A001221. If there are infinitely many Sophie Germain primes (see A005384), then this sequence is infinite. Proof : the numbers of the form 4p are in a subsequence if p and 2p+1 are both primes, because from the property that omega(4p) = 2 and omega (p(2p+1)) = 2, if n = 4p then omega (n+omega(n)) = omega (4p + 2) = omega (2(2p+1)) = 2 = omega (n).

Examples

			12 is in the sequence because omega(12) = 2, omega(12 + 2) = omega(14) = 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5*10^2],PrimeNu[#]==PrimeNu[#+PrimeNu[#]]&]
  • PARI
    is(n)=my(o=omega(n));o==omega(n+o) \\ Charles R Greathouse IV, Feb 14 2012

A279935 Numbers n such that n + sopf(n) + rad(n) = m and m - sopf(m) - rad(m) = n, where sopf(n) is the sum of the distinct primes dividing n and rad(n) is the squarefree kernel of n.

Original entry on oeis.org

3, 4, 75, 112, 2057, 9178, 29818, 73813, 138992, 240469, 531002, 661489, 716856, 763648, 905474, 1033909, 1395554, 1572001, 1605519, 1643372, 1661030, 1692277, 1705724, 2312593, 2864773, 2911839, 2928193, 2977676, 3114366, 3744951, 4035647, 4122178, 4227036, 5716177
Offset: 1

Views

Author

Paolo P. Lava, Dec 23 2016

Keywords

Examples

			Prime factors of 9178 are 2, 13, 353:
sopf(9178) = 2 + 13 + 353 = 368, rad(9178) = 2 * 13 * 353 = 9178 and 9178 + 368 + 9178 = 18724.
Prime factors of 18724 are 2, 2, 31, 151:
sopf(18724) = 2 + 31 + 151 = 184, rad(18724) = 2 * 31 * 151 = 9362 and 18724 - 184 - 9362 = 9178.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n; for n from 1 to q do
    a:=ifactors(n)[2]; b:=mul(a[k][1],k=1..nops(a))+add(a[k][1],k=1..nops(a));
    c:=n+b; a:=ifactors(c)[2]; b:=mul(a[k][1],k=1..nops(a))+add(a[k][1],k=1..nops(a));
    d:=c-b; if d=n then print(n); fi; od; end: P(10^9);
  • Mathematica
    f[n_] := Block[{pd = First@# & /@ FactorInteger@n}, Times @@ pd + Plus @@ pd]; fQ[n_] :=  n + f[n] - f[n + f[n]] == n; Select[ Range@ 1000000, fQ] (* Robert G. Wilson v, Dec 24 2016 *)
Showing 1-2 of 2 results.