A175789 Primes that become another prime under the map 8 <-> 9 (acting on the decimal digits).
181, 191, 283, 293, 787, 797, 811, 853, 877, 881, 887, 911, 953, 977, 991, 997, 1087, 1097, 1483, 1493, 1801, 1831, 1873, 1901, 1931, 1973, 2287, 2297, 2383, 2393, 2683, 2693, 2803, 2857, 2903, 2957, 3181, 3191, 3583, 3593, 3823, 3847, 3923, 3947, 4483
Offset: 1
Examples
283 is in the sequence because changing the 8 to a 9 it becomes 293, a different prime. Likewise 293 is also in the sequence. 383 is not in the sequence because changing the 8 to a 9 it becomes 393, which is thrice 131.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A171057.
Programs
-
Maple
N:= 1000000: # to get all entries <= N F:= proc(n) local L,R,i; if not isprime(n) then return false end if; L:= convert(n,base,10); R:= subs([8=9,9=8],L); if R = L then return false end if; isprime(add(R[i]*10^(i-1),i=1..nops(R))) end proc: select(F, [seq(2*i+1,i=1..floor((N-1)/2))]); # Robert Israel, Feb 11 2013
-
Mathematica
Reap[Do[p = Prime[n]; id = IntegerDigits[p]; id2 = id /. {9 -> 8, 8 -> 9}; If[PrimeQ[fd = FromDigits[id2]]&& fd != p, Sow[p]], {n, 2000}]][[2, 1]]; (* Seidov, corrected by Wouter Meeussen, Feb 10 2013 *) fQ[n_] := Block[{id = IntegerDigits@n}, (MemberQ[id, 8] || MemberQ[id, 9]) && PrimeQ[ FromDigits[id /. {8 -> 9, 9 -> 8}] ]]; Select[ Prime@ Range@ 609, fQ] (* Robert G. Wilson v, Sep 06 2010 *)
-
PARI
is_A175789(n)={my(d=digits(n)); d != (d=apply(t->bitxor(t,t>7),d)) & isprime( sum(i=1, #d, d[i]*10^(#d-i))) & isprime(n)} \\ - M. F. Hasler, Feb 11 2013