cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A175830 Number of real-valued zeros of the polynomial whose coefficients are the leading n+1 decimal digits of Euler's constant, A011543(n).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Michel Lagneau, Dec 05 2010

Keywords

Comments

a(n) is the number of real-valued zeros of the polynomial P(n,x) = sum_{k=0..n} e(k) x^k where e = 2.7182818... and A011543(n) = sum_{k>=0} e(k)*10^k.

Examples

			a(0) = 0 because 2 => P(0,x)=2 is a constant and has no real root.
a(2) = 2  because 271 => P(2,x) = 1+7x + 2x^2 has 2 real roots.
a(13) = 3 because 27182818284590  => P(13,x) = 9x +5x^2 +4x^3 +8x^4 +2x^5 +8x^6 +x^7 +8x^8 +2x^9 +8x^10 +x^11 +7x^12 +2x^13 has 3 real roots, -3.664218401…, -0.7829315178… and 0.
		

Crossrefs

Programs

  • Maple
    with(numtheory):Digits:=50: T:=array(1..45):for zz from 0 to 43 do:n:=floor(exp(1)*10^zz):
      for i from 1 to 43 do: T[i]:=0:od: l:=length(n) : n0:=n:for m from 1 to l do:q:=n0:u:=irem(q,
      10):v:=iquo(q, 10):n0:=v :u: T[m]:=u:od: x:=fsolve(T[1]+ T[2]*z + T[3]*z^2+
      T[4]*z^3+ T[5]*z^4 + T[6]*z^5 + T[7]*z^6 + T[8]*z^7 + T[9]*z^8 + T[10]*z^9+
      T[11]*z^10+ T[12]*z^11 + T[13]*z^12 + T[14]*z^13 + T[15]*z^14+ T[16]*z^15+ T[17]*z^16 + T[18]*z^17 + T[19]*z^18 + T[20]*z^19 + T[21]*z^20 + T[22]*z^21+ T[23]*z^22+ T[24]*z^23 + T[25]*z^24 + T[26]*z^25+ T[27]*z^26+ T[28]*z^27+ T[29]*z^28 + T[30]*z^29 + T[31]*z^30+ T[32]*z^31 + T[33]*z^32 + T[34]*z^33+ T[35]*z^34+ T[36]*z^35 + T[37]*z^36 + T[38]*z^37+ T[39]*z^38 + T[40]*z^39+ T[41]*z^40+ T[42]*z^41 + T[43]*z^42,  z, real):x1:=[x]: x2:=nops(x1): printf ( "%d %d %d\n",zz,n,x2):od: ~
Showing 1-1 of 1 results.