cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175801 Number of real zeros of the polynomial whose coefficients are the decimal digits of prime(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Michel Lagneau, Dec 04 2010

Keywords

Comments

a(n) is the number of real zeros of the polynomial Sum_{k>=0} d(k) x^k
where d(k) are the digits of the decimal expansion of prime(n) = Sum_{k>=0} 10^k*d(k).

Examples

			a(167) = 2 because prime(167) = 991 => P(167,x) = 1 + 9*x + 9*x^2 has 2 real-valued roots, -0.8726779962... and -0.1273220038...
		

Crossrefs

Cf. A173667.

Programs

  • Maple
    A175801 := proc(n) d := convert(ithprime(n),base,10) ; P := add( op(i,d)*x^(i-1),i=1..nops(d)) ; [fsolve(P,x,real)] ; nops(%) ; end proc:
    seq(A175801(n),n=1..45) ; # R. J. Mathar, Dec 06 2010