cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175865 Numbers k with property that 2^(k-1) == 1 (mod k) and 2^((3*k-1)/2) - 2^((k-1)/2) + 1 == 0 (mod k).

Original entry on oeis.org

3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 131, 139, 149, 157, 163, 173, 179, 181, 197, 211, 227, 229, 251, 269, 277, 283, 293, 307, 317, 331, 347, 349, 373, 379, 389, 397, 419, 421, 443, 461, 467, 491, 499, 509, 523, 541, 547, 557, 563
Offset: 1

Views

Author

Alzhekeyev Ascar M, Sep 30 2010

Keywords

Comments

All composites in this sequence are 2-pseudoprimes, see A001567.
The subsequence of composites begins: 3277, 29341, 49141, 80581, 88357, 104653, 196093, 314821, 458989, 476971, 489997, ..., . - Robert G. Wilson v, Oct 02 2010
The sequence includes all the primes of A003629. - Alzhekeyev Ascar M, Mar 09 2011
If we consider the composites in this sequence which are in the modulo classes == 3 (mod 8) or == 5 (mod 8), they are moreover strong pseudoprimes to base 2 (see A001262). - Alzhekeyev Ascar M, Mar 09 2011
Are there any composites in this sequence which are *not* in the two modulo classes == {3,5} (mod 8)? - R. J. Mathar, Mar 29 2011

Examples

			3 is a term since 2^(3-1)-1 = 3 is divisible by 3, and 2^((3*3-1)/2) - 2^((3-1)/2) + 1 = 15 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PowerMod[2, n - 1, n] == 1 && Mod[ PowerMod[2, (3 n - 1)/2, n] - PowerMod[2, (n - 1)/2, n], n] == n - 1; Select[ Range@ 570, fQ] (* Robert G. Wilson v, Oct 02 2010 *)

Extensions

More terms from Robert G. Wilson v, Oct 02 2010