cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175898 Expansion of (1+3*x+9*x^2+9*x^3+9*x^4+3*x^5+x^6) /( (1+x)^2 * (1-x)^5 ).

Original entry on oeis.org

1, 6, 26, 76, 186, 386, 726, 1251, 2031, 3126, 4626, 6606, 9176, 12426, 16486, 21461, 27501, 34726, 43306, 53376, 65126, 78706, 94326, 112151, 132411, 155286, 181026, 209826, 241956, 277626, 317126, 360681, 408601, 461126, 518586, 581236, 649426, 723426
Offset: 0

Views

Author

Jamil da SIlva, Oct 11 2010

Keywords

Crossrefs

Bisections: A181342, A181343.

Programs

  • Mathematica
    LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,6,26,76,186,386,726},40] (* Harvey P. Dale, Feb 27 2012 *)
  • PARI
    Vec((1+3*x+9*x^2+9*x^3+9*x^4+3*x^5+x^6)/((1+x)^2*(1-x)^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n)=5*n*(7*n^3 + 14*n^2 + 44*n + 37 + 3*(-1)^n)\/96 + 1 \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(n) = 55*n^2/24 +185*n/96 +59/64 +35*n^4/96 +35*n^3/48 +(5*n/32+5/64)*(-1)^n.
a(2n) = (55*n^2+25*n+6+35*n^4+35*n^3)/6.
a(n) = +3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7).

Extensions

Edited by R. J. Mathar, Oct 12 2010