cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175904 Numbers m for which the set of prime divisors of m^2-1 is unique.

Original entry on oeis.org

2, 3, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 27, 28, 30, 32, 33, 36, 38, 39, 40, 42, 44, 45, 46, 47, 48, 50, 52, 54, 57, 58, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 93, 94, 95, 96, 98, 99
Offset: 1

Views

Author

Artur Jasinski, Oct 12 2010, Oct 21 2010

Keywords

Comments

Complement of A175903. A proof for the presence of the first 63 terms (for which the largest prime divisor is < 100) follows along the lines of the comment in A175607.

Examples

			The unique prime factor sets are {3} (m=2), {2} (m=3), {5,7} (m=6), {3,7} (m=8), {2,5} (m=9) etc.
		

Crossrefs

Programs

  • Mathematica
    aa = {}; bb = {}; cc = {}; ff = {}; Do[k = n^2 - 1; kk = FactorInteger[k]; b = {}; Do[AppendTo[b, kk[[m]][[1]]], {m, 1, Length[kk]}]; dd = Position[aa, b]; If[dd == {}, AppendTo[cc, n]; AppendTo[aa, b], AppendTo[ff, n]; AppendTo[bb, cc[[dd[[1]][[1]]]]]], {n, 2, 1000000}]; jj=Table[n,{2,99}]; ss=Union[bb,ff]; Take[Complement[jj,ss],63] (*Artur Jasinski*)