A175929 Triangle T(n,v) read by rows: the number of permutations of [n] with "entropy" equal to 2*v.
1, 1, 1, 1, 1, 2, 0, 2, 1, 1, 3, 1, 4, 2, 2, 2, 4, 1, 3, 1, 1, 4, 3, 6, 7, 6, 4, 10, 6, 10, 6, 10, 6, 10, 4, 6, 7, 6, 3, 4, 1, 1, 5, 6, 9, 16, 12, 14, 24, 20, 21, 23, 28, 24, 34, 20, 32, 42, 29, 29, 42, 32, 20, 34, 24, 28, 23, 21, 20, 24, 14, 12, 16, 9, 6, 5, 1, 1, 6, 10, 14, 29, 26, 35, 46, 55
Offset: 0
Examples
Triangle T(n,v) starts in row n=0 and column v=0 as follows: 1; 1; 1, 1; 1, 2, 0, 2, 1; 1, 3, 1, 4, 2, 2, 2, 4, 1, 3, 1; 1, 4, 3, 6, 7, 6, 4, 10, 6, 10, 6, 10, 6, 10, 4, 6, 7, 6, 3, 4, 1; ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd. ed., 1993.
Links
- Alois P. Heinz, Rows n = 0..20, flattened
- FindStat - Combinatorial Statistic Finder, The rank of the permutation inside the alternating sign matrix lattice.
Programs
-
Maple
with(combinat): T:= n-> (p-> seq(coeff(p, x, j), j=ldegree(p)..degree(p))) (add(x^add(i*l[i], i=1..n), l=permute(n))): seq(T(n), n=0..7); # Alois P. Heinz, Aug 28 2014 # second Maple program: b:= proc(s) option remember; (n-> `if`(n=0, 1, add(expand( x^((n-j)^2/2)*b(s minus {j})), j=s)))(nops(s)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n})): seq(T(n), n=0..7); # Alois P. Heinz, Mar 02 2024
-
Mathematica
b[s_] := b[s] = With[{n = Length[s]}, If[n == 0, 1, Sum[Expand[x^((n-j)^2/2)*b[s~Complement~{j}]], {j, s}]]]; T[n_] := CoefficientList[b[Range[n]], x]; Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 22 2024, after Alois P. Heinz *)
Formula
Sum_{k>=0} k * T(n,k) = A001754(n+1). - Alois P. Heinz, Mar 02 2024
Extensions
Row length term corrected by R. J. Mathar, Oct 23 2010
T(0,0)=1 prepended by Alois P. Heinz, Nov 23 2023
Comments