A175933 Number of ways of writing n=p+k with p a prime number and k a primorial number.
0, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 2, 0, 2, 0, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 2, 1, 3, 0, 0, 0, 2, 1, 1, 0, 0, 0, 2, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 1, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 1
Offset: 1
Keywords
Examples
a(4)=2 because 4(natural) = 2(prime)+2(primorial) = 3(prime)+1(primorial).
Links
- Bill McEachen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A002110 := proc(n) option remember; if n = 0 then 1; else mul( ithprime(k),k=1..n) ; end if; end proc: A175933 := proc(n) a := 0 ; for k from 0 do p := A002110(k) ; if p +2 > n then return a; elif isprime(n-p) then a := a+1 ; end if; end do: end proc: seq(A175933(n),n=1..120) ; # R. J. Mathar, Oct 25 2010
-
Mathematica
t = Table[Product[Prime@ k, {k, n}], {n, 0, 5}]; Table[Count[Map[First, Function[k, Transpose@ {k - #, #} &@ Prime@ Range@ PrimePi@ k]@ n], x_ /; MemberQ[t, x]], {n, 120}] (* Michael De Vlieger, Jan 09 2016 *)
-
PARI
lyst(maxx)={n=1; while (n<=maxx,c=0; q=1; for(i5=0, n, if(i5>0, q=q*prime(i5)); if(q>n-2,break); z=truncate(q); if(isprime(n-z),c++)); print1(c,","); n+=1);} \\ Bill McEachen, Jan 07 2016
-
PARI
A175933(n,p=1,k=1,c=0)={until(2>n-k*=p=nextprime(p+1),isprime(n-k)&&c++);c} \\ M. F. Hasler, Jan 21 2016
Extensions
a(85), a(89), etc. corrected by R. J. Mathar, Oct 25 2010
Comments