A175958 Number of partitions of n^2 into 4 distinct nonzero squares.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 5, 0, 4, 4, 5, 0, 10, 4, 7, 0, 11, 7, 17, 1, 13, 17, 15, 0, 29, 13, 27, 4, 23, 17, 41, 0, 29, 35, 32, 4, 66, 24, 38, 0, 47, 35, 73, 7, 50, 56, 73, 1, 91, 42, 63, 17, 68, 49, 125, 0, 103, 93, 83, 13, 133, 86, 93, 4
Offset: 0
Examples
a(9)=1 refers to the partition 9^2 = 2^2+4^2+5^2+6^2. a(11)=1 refers to 11^2 = 1^2+2^2+4^2+10^2. a(13)=2 refers to 13^2 = 1^2+2^2+8^2+10^2 = 2^2+4^2+7^2+10^2.
Links
- Alois P. Heinz and Donovan Johnson, Table of n, a(n) for n = 0..1000 (terms up to a(300) from Alois P. Heinz)
Programs
-
Maple
A025443 := proc(n) local res,a,b,c,d ; res := 0 ; for a from 1 do if 4*a^2 > n then break; fi; for b from a+1 do if a^2+3*b^2 > n then break; fi; for c from b+1 do if a^2+b^2+2*c^2 > n then break; fi; for d from c+1 do if a^2+b^2+c^2+d^2 > n then break; elif a^2+b^2+c^2+d^2 = n then res := res+1 ; fi ; end do; end do; end do: end do: res ; end proc: A := proc(n) A025443(n^2) ; end proc: seq(A(n),n=0..60) ; # second Maple program: b:= proc(n,i,t) option remember; `if`(n=0, `if`(t=0,1,0), `if`(t*i^2
n, 0, b(n-i^2,i-1,t-1)))) end: a:= n-> b(n^2, n, 4): seq(a(n), n=0..80); # Alois P. Heinz, Feb 07 2013 -
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[t*i^2 < n, 0, If[i == 1, 0, b[n, i-1, t]] + If[i^2 > n, 0, b[n-i^2, i-1, t-1]]]]; a[n_] := b[n^2, n, 4]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
Formula
a(n) = A025443(n^2).
Extensions
More terms from Alois P. Heinz, Feb 07 2013