A176113 Determinant of n X n matrix whose (i,j)-th element is (i+j)^(n-1).
1, -1, -8, 1296, 7962624, -2985984000000, -100306130042880000000, 416336312719673760153600000000, 281633758444745849464726940024832000000000
Offset: 1
Keywords
Examples
a(3) = determinant(M_3) = -8 where M_3 is the matrix [4 9 16] [9 16 25] [16 25 36]
References
- J. M. Monier, Algebre & geometrie, Dunod (1996), p.216.
Crossrefs
Cf. A091868.
Programs
-
Mathematica
a[n_] = ((-1)^((n - Mod[n, 2])/2))*((n - 1)!)^n; Table[a[n], {n, 9}] (* from Jean-François Alcover, Aug 31 2011 *)
Formula
a(n) = (-1)^floor(n/2)* ((n-1)!)^n.
Comments