A176158 Triangle read by rows: T(n,m) = (1 + 2 * binomial(n,m))^n for 0 <= m <= n, n >= 0.
1, 3, 3, 9, 25, 9, 27, 343, 343, 27, 81, 6561, 28561, 6561, 81, 243, 161051, 4084101, 4084101, 161051, 243, 729, 4826809, 887503681, 4750104241, 887503681, 4826809, 729, 2187, 170859375, 271818611107, 9095120158391, 9095120158391, 271818611107, 170859375, 2187
Offset: 0
Examples
{1}, {3, 3}, {9, 25, 9}, {27, 343, 343, 27}, {81, 6561, 28561, 6561, 81}, {243, 161051, 4084101, 4084101, 161051, 243}, {729, 4826809, 887503681, 4750104241, 887503681, 4826809, 729}, {2187, 170859375, 271818611107, 9095120158391, 9095120158391, 271818611107, 170859375, 2187}.
Programs
-
Maple
f:= proc(n) local m; seq((binomial(n,m)*2+1)^n, m=0..n) end proc: for n from 0 to 10 do f(n) od; # Robert Israel, Dec 04 2024
-
Mathematica
Clear[p, n, m]; p[x_, n_, m_] := (1 + 2*Binomial[n, m]*x)^n; Table[Table[ Apply[Plus, CoefficientList[p[x, n, m], x]], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
T(n,m) = (1 + 2*binomial(n,m))^n.
Extensions
Edited by Robert Israel, Dec 04 2024
Comments