cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176158 Triangle read by rows: T(n,m) = (1 + 2 * binomial(n,m))^n for 0 <= m <= n, n >= 0.

Original entry on oeis.org

1, 3, 3, 9, 25, 9, 27, 343, 343, 27, 81, 6561, 28561, 6561, 81, 243, 161051, 4084101, 4084101, 161051, 243, 729, 4826809, 887503681, 4750104241, 887503681, 4826809, 729, 2187, 170859375, 271818611107, 9095120158391, 9095120158391, 271818611107, 170859375, 2187
Offset: 0

Views

Author

Roger L. Bagula, Apr 10 2010

Keywords

Comments

Row sums are: 1, 6, 43, 740, 41845, 8490790, 6534766679, 18734219262120, 209617607911694569, 8719076076193077820874, 1429879617351180068934959131, ... .

Examples

			{1},
{3, 3},
{9, 25, 9},
{27, 343, 343, 27},
{81, 6561, 28561, 6561, 81},
{243, 161051, 4084101, 4084101, 161051, 243},
{729, 4826809, 887503681, 4750104241, 887503681, 4826809, 729},
{2187, 170859375, 271818611107, 9095120158391, 9095120158391, 271818611107, 170859375, 2187}.
		

Crossrefs

Columns m=0-1 give: A000244, A085527.

Programs

  • Maple
    f:= proc(n) local m; seq((binomial(n,m)*2+1)^n, m=0..n) end proc:
    for n from 0 to 10 do f(n) od; # Robert Israel, Dec 04 2024
  • Mathematica
    Clear[p, n, m];
    p[x_, n_, m_] := (1 + 2*Binomial[n, m]*x)^n;
    Table[Table[ Apply[Plus, CoefficientList[p[x, n, m], x]], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

T(n,m) = (1 + 2*binomial(n,m))^n.

Extensions

Edited by Robert Israel, Dec 04 2024