A176175 Numbers k such that (2^(k-1) mod k) = number of prime divisors of k (counted with multiplicity).
1, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 74, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 131, 134, 137, 139, 142, 146, 149, 151, 157, 158, 163, 166, 167, 173, 178, 179, 181, 191, 193, 194, 197, 199, 202, 206, 211, 214, 218, 223, 226, 227, 229, 233, 239, 241, 251, 254
Offset: 1
Keywords
Programs
-
Maple
for n from 1 to 180 do modp(2^(n-1),n) ; if % = numtheory[bigomega](n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 07 2010
-
Mathematica
Select[Range[254], PrimeOmega[#] == PowerMod[2, # - 1, #] &] (* Michael De Vlieger, Jul 02 2025 *)
Comments