cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A177024 Numbers k such that 2^(k-1) mod k = number of divisors of k.

Original entry on oeis.org

15, 21, 24, 33, 39, 40, 51, 57, 69, 87, 93, 111, 123, 129, 141, 154, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723, 731, 753, 771, 789, 807, 813, 831, 843, 849, 879, 921
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 08 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Mod[2^(# - 1), #] == Length[Divisors[#]] &]
    Select[Range[1000],PowerMod[2,#-1,#]==Length[Divisors[#]]&] (* Harvey P. Dale, Nov 19 2015 *)
    Select[Range[1000], PowerMod[2, #-1, #] == DivisorSigma[0, #] &] (* Amiram Eldar, Jul 12 2022 *)

Formula

A062173(a(n)) = A000005(a(n)).
Showing 1-1 of 1 results.