A176185 Numbers n with property that concatenation (2*n+1)//n of the decimals is a square.
29, 76, 2289, 3796, 6369, 8756, 16736, 19696, 24900, 28484, 77529, 83761, 94169, 222889, 887556, 22228889, 88875556, 112594641, 368762025, 651177616
Offset: 1
Examples
n = 29 is a term: 2 * n + 1 = 59, 5929 = 59//29 = 77^2 is a perfect square. n = 6369 is a term: 2 * n + 1 = 12739. 12739//6369 = 11287^2 is a perfect square.
References
- J. Buchmann, U. Vollmer: Binary Quadratic Forms, Springer, Berlin, 2007
- L. E. Dickson: History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications, 2005
Programs
-
Maple
isA176185 := proc(n) digcat2(2*n+1,n) ; # of oeis.org/transforms.txt issqr(%) ; end proc: for n from 1 do if isA176185(n) then print(n) ; end if; end do: # R. J. Mathar, May 21 2025
-
Mathematica
Select[Range[6512*10^5],IntegerQ[Sqrt[(2 #+1)10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Mar 05 2022 *)
Comments