A176194 Numbers with no zero digits divisible by the sum of the k-th powers of their digits, for each k = 1,2,3,4.
1, 111, 1121211, 11243232, 12132432, 12413232, 22331232, 23111352, 23411232, 24113232, 41223312, 42131232, 44662464, 111111111, 112452144, 114251424, 135964224, 211412544, 246134592, 313212312, 332131212, 382941675, 416283624, 442114512, 523173456, 671635575, 979652772
Offset: 1
Examples
For n = 246134592 we obtain : 2^4 + 4^4 + 6^4 + 1^4 + 3^4 + 4^4 + 5^4 + 9^4 + 2^4 = 9108, and 246134592 = 9108*27024 ; 2^3 + 4^3 + 6^3 + 1^3 + 3^3 + 4^3 + 5^3 + 9^3 + 2^3 = 1242, and 246134592 = 1242*198176 ; 2^2 + 4^2 + 6^2 + 1^2 + 3^2 + 4^2 + 5^2 + 9^2 + 2^2 = 192, and 246134592 = 192*1281951 ; 2 + 4 + 6 + 1 + 3 + 4 + 5 + 9 + 2 = 36, and 246134592 = 36*6837072.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..464
Crossrefs
Programs
-
Maple
with(numtheory):for n from 2 to 500000000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:s4:=0:p:=1:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:p:=p*u:s2:=s2+u^2:s3:=s3+u^3:s4:=s4+u^4: od:if irem(n,s1)=0 and irem(n,s2)=0 and irem(n,s3)=0 and irem(n,s4)=0 and p<>0 then print(n):else fi:od:
Extensions
a(1)-a(2) and more terms add by Amiram Eldar, Apr 20 2023
Comments