A176239 Shifted signed Catalan triangle T(n,k) = (-1)^*(n+k+1)*A009766(n,k-n+1) read by rows.
0, -1, 1, -1, 0, 2, 0, 1, -2, 2, 0, -5, 0, 0, 1, -3, 5, -5, 0, 14, 0, 0, 0, 1, -4, 9, -14, 14, 0, -42, 0, 0, 0, 0, 1, -5, 14, -28, 42, -42, 0, 132, 0, 0, 0, 0, 0, 1, -6, 20, -48, 90, -132, 132, 0, -429, 0, 0, 0, 0, 0, 0, 1, -7, 27, -75, 165, -297, 429, -429, 0, 1430
Offset: 0
Examples
The triangle starts in row n=0 with columns 0 <= k < 2*(n+1) as: 0,-1; (-1)^k*k A001477 1,-1,.0,.2; (-1)^(k+1)*(k+1)*(k-2)/2 A080956, A000096 0,.1,-2,.2,.0,-5; (-1)^n*k*(k+1)*(k-4)/6 A129936, A005586 0,.0,.1,-3,.5,-5,..0,.14; (-1)^k*k*(k+1)*(k-1)*(k-6)/24, A005587 0,.0,.0,.1,-4,.9,-14,.14,.0,-42; A005557, A034807 0,.0,.0,.0,.1,-5,.14,-28,42,-42,0,132;
Programs
-
Maple
A009766 := proc(n,k) if k<0 or k >n then 0; else binomial(n+k,n)*(n-k+1)/(n+1) ; end if; end proc: A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc: A176239 := proc(n,k) if k <= 2*n-1 then (-1)^(n+k+1)*A009766(n,k-n+1) elif k = 2*n then 0; elif k < 2*(n+1) then (-1)^(n+1)*A000108(n+1); else 0; end if; end proc: # R. J. Mathar, Dec 03 2010