A176280 Diagonal sums of number triangle A046521.
1, 2, 7, 26, 101, 402, 1625, 6638, 27319, 113054, 469811, 1958706, 8187063, 34290934, 143864999, 604402050, 2542083509, 10702020746, 45090876913, 190110250998, 801997354525, 3384971428258, 14292950533517, 60373808435046, 255102065046401, 1078202260326002
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)/(1-4*x-x^2) )); // G. C. Greubel, Nov 24 2019 -
Maple
seq(coeff(series(sqrt(1-4*x)/(1-4*x-x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 24 2019 a := n -> 4^n*binomial(n-1/2, n)*hypergeom([1, (1-n)/2, -n/2], [1/2, 1/2-n], -1/4): seq(simplify(a(n)), n = 0..25); # Peter Luschny, Mar 30 2025
-
Mathematica
CoefficientList[Series[Sqrt[1-4*x]/(1-4*x-x^2), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
-
PARI
my(x='x+O('x^30)); Vec(sqrt(1-4*x)/(1-4*x-x^2)) \\ G. C. Greubel, Nov 24 2019
-
Sage
def A176280_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( sqrt(1-4*x)/(1-4*x-x^2) ).list() A176280_list(30) # G. C. Greubel, Nov 24 2019
Formula
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(2*(n-k),n-k)/C(2*k,k).
From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: sqrt(1-4*x)/(1-4*x-x^2).
Recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
a(n) ~ (2+sqrt(5))^n/(2*sqrt(5)). (End)
a(n) = 4^n*binomial(n-1/2, n)*hypergeom([1, (1-n)/2, -n/2], [1/2, 1/2-n], -1/4). - Peter Luschny, Mar 30 2025
Comments