cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176280 Diagonal sums of number triangle A046521.

Original entry on oeis.org

1, 2, 7, 26, 101, 402, 1625, 6638, 27319, 113054, 469811, 1958706, 8187063, 34290934, 143864999, 604402050, 2542083509, 10702020746, 45090876913, 190110250998, 801997354525, 3384971428258, 14292950533517, 60373808435046, 255102065046401, 1078202260326002
Offset: 0

Views

Author

Paul Barry, Apr 14 2010

Keywords

Comments

Hankel transform is A176281.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)/(1-4*x-x^2) )); // G. C. Greubel, Nov 24 2019
    
  • Maple
    seq(coeff(series(sqrt(1-4*x)/(1-4*x-x^2), x, n+1), x, n), n = 0..30);
    # G. C. Greubel, Nov 24 2019
    a := n -> 4^n*binomial(n-1/2, n)*hypergeom([1, (1-n)/2, -n/2], [1/2, 1/2-n], -1/4):
    seq(simplify(a(n)), n = 0..25); # Peter Luschny, Mar 30 2025
  • Mathematica
    CoefficientList[Series[Sqrt[1-4*x]/(1-4*x-x^2), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec(sqrt(1-4*x)/(1-4*x-x^2)) \\ G. C. Greubel, Nov 24 2019
    
  • Sage
    def A176280_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt(1-4*x)/(1-4*x-x^2) ).list()
    A176280_list(30) # G. C. Greubel, Nov 24 2019

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(2*(n-k),n-k)/C(2*k,k).
From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: sqrt(1-4*x)/(1-4*x-x^2).
Recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
a(n) ~ (2+sqrt(5))^n/(2*sqrt(5)). (End)
a(n) = 4^n*binomial(n-1/2, n)*hypergeom([1, (1-n)/2, -n/2], [1/2, 1/2-n], -1/4). - Peter Luschny, Mar 30 2025