A176292 Numbers k such that the prime factorizations of composite(k) and composite(k+1) have the same number of primes (including multiplicities).
1, 4, 7, 10, 12, 15, 17, 18, 21, 22, 25, 28, 29, 40, 47, 53, 61, 62, 64, 68, 69, 72, 85, 87, 90, 91, 93, 100, 102, 106, 107, 110, 112, 114, 116, 120, 125, 130, 131, 132, 133, 136, 151, 154, 155, 158, 165, 166, 169, 170, 179, 181, 190, 191, 198, 212, 221, 222, 223
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A001222 := proc(n) numtheory[bigomega](n) ; end proc: A002808 := proc(n) if n = 1 then return 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do; end if; end proc: for n from 1 to 400 do if A001222(A002808(n)) = A001222(A002808(n+1)) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Apr 20 2010
-
Mathematica
SequencePosition[PrimeOmega/@Select[Range[300],CompositeQ],{x_,x_}][[;;,1]] (* Harvey P. Dale, Jun 21 2023 *)
Extensions
Corrected (86 replaced with 87, 89 removed, many terms after 92 replaced) by R. J. Mathar, Apr 20 2010