cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176781 Smallest prime prime(i) such that concatenation 2//0_(n)//prime(i) is prime.

Original entry on oeis.org

3, 11, 3, 17, 3, 3, 3, 11, 89, 41, 257, 3, 29, 131, 353, 3, 3, 11, 89, 521, 257, 3, 17, 3, 467, 89, 149, 17, 71, 47, 293, 17, 191, 47, 3, 41, 23, 11, 401, 41, 443, 41, 293, 479, 311, 23, 587, 41, 1289, 1013, 29, 41, 59, 293, 1031, 17, 23, 17, 347, 401, 599, 11, 227, 827, 401
Offset: 0

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 26 2010

Keywords

Comments

We search for the prime such that the first prime (=2) concatenated with n zeros and concatenated with that prime is again a prime number.
If p = prime(i) is a d(i)-digit prime: q = 2 * 10^(n+d(i)) + p has to be prime.
Necessarily prime(i) is congruent to 2 (mod 3).
It is conjectured that prime(i) = 3 occurs infinitely often: at n= 0, 2, 4, 5, 6, 11, 15, 16, 21, 23, 34, 114, 119,...

Examples

			n = 0: 2//3 = 23 = prime(9), 3 = prime(2) is first term
n = 1: 2//0//11 = 2011 = prime(305), 11 = prime(5) is 2nd term
n = 2: 2//00//3 = 2003 = prime(304), 3 = prime(2) is 3rd term
		

References

  • E. I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig/Jena/ Berlin 1982

Crossrefs

Extensions

Offset corrected and sequence extended by R. J. Mathar, Apr 28 2010

A176833 Smallest prime p = prime(i) such that concatenation q(i) = 13//0_(k)//prime(i) (k = 0, 1, 2, ...) is prime.

Original entry on oeis.org

7, 3, 3, 3, 151, 61, 7, 3, 19, 3, 109, 109, 19, 19, 37, 409, 109, 97, 61, 19, 73, 109, 139, 139, 619, 31, 127, 31, 193, 3, 43, 19, 337, 7, 73, 367, 109, 373, 139, 139
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 27 2010

Keywords

Comments

See comments in A176781
Necessarily p = 3 or p of form 3 * n + 1
In recreational mathematics some authors call a prime that is composed of mostly naughts, i.e. zeros, a naughty prime

Examples

			q(0) = 13//7 = 137 = prime(33), 7 = prime(4) is 1st term
q(1) = 13//0//3 = 1303 = prime(213), 3 = prime(2) is 2nd term
q(26) = 13000000000000000000000000031 is a palindromic prime
		

Crossrefs

A176955 Primes p such that q=3//p, r=p//3, R(q) and R(r) are primes.

Original entry on oeis.org

7, 11, 37, 73, 191, 373, 719, 929, 1033, 1193, 3301, 3461, 3911, 3931, 10223, 10771, 12071, 12451, 13669, 13931
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 29 2010

Keywords

Comments

q and r are emirps (see A006567) as R(q) and R(r) are requested to be primes too
3 = prime(2) is first prime for such a "construction" with prefixed/appended number and reversals
Necessarily FSD (First Significant Digit) of p is 1, 3, 7 or 9
If such a p is a palindromic prime, i.e. p = R(p), then q = R(r) and r = R(q):
Proof: q = 3//p = 3//R(p) = R(p//3) = R(r), r = p//3 = R(p)//3 = R(3//p) = R(q).
If such a p is an emirp, i.e. R(p) also prime, then R(p) is also term of sequence:
Proof: 3//R(p) = R(p//3) = R(r), R(p)//3 = R(3//p) = R(q), R(3//R(p)) = p//3 = r, R(R(p)//3) = 3//p = q.
List of (p: q, r, R(q), R(r))
(7=palprime(4): 37, 73, 73, 37), (11=palprime(5): 311, 113, 113, 311),
(37=emirp(4): 337, 373, 733, 373), (73=emirp(6): 373, 733, 373, 337),
(191=palprime(10): 3191, 1913, 1913, 3191), (373=palprime(13): 3373, 3733, 3733, 3373),
(719=prime(128): 3719, 7193, 9173, 3917), (929=palprime(20): 3929, 9293, 9293, 3929),
(1033=emirp(40): 31033, 10333, 33013, 33301), (1193=emirp(50): 31193, 11933, 39113, 33911),
(3301=emirp(115): 33301, 33013, 10333, 31033), (3461=prime(484): 33461, 34613, 16433, 31643),
(3911=emirp(145): 33911, 39113, 11933, 31193), (3931=prime(546): 33931, 39313, 13933, 31393),
(10223=prime(1254): 310223, 102233, 322013, 332201), (10771=prime(1312): 310771, 107713, 177013, 317701),
(12071=emirp(326): 312071, 120713, 170213, 317021), (12451=prime(1486): 312451, 124513, 154213, 315421),
(13669=prime(1614): 313669, 136693, 966313, 396631), (13931=palprime(31): 313931, 139313, 139313, 313931)

Examples

			q=3//7=37=prime(12), r=7//3=73=prime(21), R(q)=r, R(r)=q, p=7=prime(4) is 1st term
q=3//719=3719=prime(519), r=719//3=7193=prime(919), R(q)=9173=prime(1137), R(r)=3917=prime(452),
p=719=prime(2^7) is 7th term and the first where q, r, R(q), R(r) are four different primes
		

References

  • Peter Bundschuh: Einfuehrung in die Zahlentheorie, 6. Auflage, Springer, Berlin, 2008
  • Martin Gardner: Die magischen Zahlen des Dr. Matrix , Wolfgang Krueger Verlag FrankfurtMain, 1987

Crossrefs

Showing 1-3 of 3 results.