cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176327 Numerators of the rational sequence with e.g.f. (x/2)*(1+exp(-x))/(1-exp(-x)).

Original entry on oeis.org

1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0

Views

Author

Paul Curtz, Apr 15 2010

Keywords

Comments

Numerator of the Bernoulli number B_n, except B(1)=0.
A027641 is the main entry for this sequence, which is only a minor variation. - N. J. A. Sloane, Nov 29 2010.
This could formally be defined by building the arithmetic mean of the numerators in A164555(n) and A027641(n).

Crossrefs

Cf. A176289 (denominators), A027642, A141056, A164020, A165823

Programs

  • Maple
    seq(numer((bernoulli(i,0)+bernoulli(i,1))/2),i=0..40); # Peter Luschny, Jun 17 2012
  • Mathematica
    terms = 41; egf = (x/2)*((1 + Exp[-x])/(1 - Exp[-x])) + O[x]^(terms+1);
    CoefficientList[egf, x]*Range[0, terms-1]! // Numerator (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    apply(numerator, Vec(serlaplace((x/2)*(1+exp(-x))/(1-exp(-x))))) \\ Charles R Greathouse IV, Sep 26 2017

Formula

a(2n+1) = 0. a(2n ) = A000367(n).
a(n) = A164555(n) = A027641(n) if n <>1.

Extensions

New name from Peter Luschny, Jun 18 2012