A176334 Diagonal sums of number triangle A176331.
1, 1, 2, 4, 9, 21, 51, 124, 305, 755, 1879, 4698, 11792, 29694, 74984, 189811, 481498, 1223713, 3115200, 7942134, 20275362, 51823246, 132604193, 339644739, 870745187, 2234208932, 5737129623, 14742751524, 37909928908, 97543380598
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
T:= function(n,k) return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) ); end; List([0..30], n-> Sum([0..Int(n/2)], j-> T(n-j,j) )); # G. C. Greubel, Dec 07 2019
-
Magma
T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >; [(&+[T(n-k,k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Dec 07 2019
-
Maple
A176334 := proc(n) add(add(binomial(j,n-2*k)*binomial(j,k)*(-1)^(n-k-j),j=0..n-k), k=0..floor(n/2)) ; end proc: # R. J. Mathar, Feb 10 2015
-
Mathematica
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Dec 07 2019 *)
-
PARI
T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k)); vector(30, n, sum(j=0, (n-1)\2, T(n-j-1,j)) ) \\ G. C. Greubel, Dec 07 2019
-
Sage
@CachedFunction def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n)) [sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Dec 07 2019
Formula
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(j,n-2k)*C(j,k)*(-1)^(n-k-j).
a(n) ~ phi^(2*n+3) / (4*5^(1/4)*sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 08 2024