A176371 Primes p such that reversal(p) - 13 is a square.
31, 41, 71, 83, 281, 311, 431, 479, 733, 751, 797, 2011, 2857, 3163, 4373, 4397, 4943, 7541, 7577, 7583, 9413, 9491, 20533, 20731, 20771, 24151, 24547, 24767, 26249, 28979, 31121, 41201, 41609, 43321, 43391, 43753, 45641, 49459, 49463, 49811, 49891
Offset: 1
Examples
41 = prime(13), R(41) - 13 = 14 - 13 = 1^2, is a term. 71 = prime(20), 17 - 13 = 2^2, is a term. 83 = prime(23), 38 - 13 = 5^2, is a term. 797 = prime(139) = palindromic prime(18), N = 28^2, is also a term. Note successive terms that are also consecutive primes: p(17) = 7577, p(18) = 7583, p(36) = 49459, p(37) = 49463, p(46) = 77849, p(47) = 77863.
References
- W. W. R. Ball, H. S. M.Coxeter: Mathematical Recreations and Essays, Dover Publications, 13th edition, 1987
- O. Fritsche, R. Mischak and T. Krome: Verflixt und zugeknobelt, Mehr mathematische Raetselgeschichten, Rowohlt TB. Nr.62190, 2007
- C. W. Trigg, Primes with Reverses That Are Powers, J. Rec. Math. 17, 1985
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..7605
Programs
-
PARI
isok(n) = {if (! isprime(n), return (0)); d = digits(n); revn = sum(i=1, #d, d[i]*10^(i - 1)); issquare(revn-13);} \\ Michel Marcus, Aug 25 2013
-
Python
from sympy import isprime A176371_list, i, j = [], 0, 13 while j < 10**10: p = int(str(j)[::-1]) if j % 10 and isprime(p): A176371_list.append(p) j += 2*i+1 i += 1 A176371_list = sorted(A176371_list) # Chai Wah Wu, Dec 17 2015
Extensions
Two more terms 31 and 3163 added by Michel Marcus, Aug 25 2013
Comments