cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176371 Primes p such that reversal(p) - 13 is a square.

Original entry on oeis.org

31, 41, 71, 83, 281, 311, 431, 479, 733, 751, 797, 2011, 2857, 3163, 4373, 4397, 4943, 7541, 7577, 7583, 9413, 9491, 20533, 20731, 20771, 24151, 24547, 24767, 26249, 28979, 31121, 41201, 41609, 43321, 43391, 43753, 45641, 49459, 49463, 49811, 49891
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 16 2010

Keywords

Comments

R(n) denotes the Reversal of a natural number n
List of all (p,N) for p < 10^6 - 1:
(*) for emirp pair (p,R(p)), (+) if square base N is a prime
(41,1), (71,2) (+) (*), (83,5) (+), (281,13) (+), (311,10) (*), (431,11) (+), (479,31) (+), (733,18) (*), (751,12) (*), (797,28),
(2011,33), (2857,87), (4373,61) (+), (4397,89) (+), (4943,59) (+), (7541,38), (7577,88) (*), (7583,62), (9413,56), (9491,44) (*), (20533,183), (20731,117), (20771,133), (24151,123), (24547,273), (24767,277) (+), (26249,307) (+), (28979,313) (+), (31121,110) (*), (41201,101) (+),
(41609,301), (43321,111), (43391,139) (+), (43753,189), (45641,121), (49459,309), (49463,191) (+), (49811,109), (49891,141), (71293,198) (*),
(73133,182), (73471,132), (73597,282) (*), (75521,112), (77611,108) (*), (77849,308), (77863,192) (*), (79613,178), (79841,122) (*), (83207,265),
(83231,115), (83243,185), (83299,315), (90031,114) (*), (92801,104), (96431,116) (*), (98057,274)

Examples

			41 = prime(13), R(41) - 13 = 14 - 13 = 1^2, is a term.
71 = prime(20), 17 - 13 = 2^2, is a term.
83 = prime(23), 38 - 13 = 5^2, is a term.
797 = prime(139) = palindromic prime(18), N = 28^2, is also a term.
Note successive terms that are also consecutive primes: p(17) = 7577, p(18) = 7583, p(36) = 49459, p(37) = 49463, p(46) = 77849, p(47) = 77863.
		

References

  • W. W. R. Ball, H. S. M.Coxeter: Mathematical Recreations and Essays, Dover Publications, 13th edition, 1987
  • O. Fritsche, R. Mischak and T. Krome: Verflixt und zugeknobelt, Mehr mathematische Raetselgeschichten, Rowohlt TB. Nr.62190, 2007
  • C. W. Trigg, Primes with Reverses That Are Powers, J. Rec. Math. 17, 1985

Crossrefs

Programs

  • PARI
    isok(n) = {if (! isprime(n), return (0)); d = digits(n); revn = sum(i=1, #d, d[i]*10^(i - 1)); issquare(revn-13);} \\ Michel Marcus, Aug 25 2013
    
  • Python
    from sympy import isprime
    A176371_list, i, j = [], 0, 13
    while j < 10**10:
        p = int(str(j)[::-1])
        if j % 10 and isprime(p):
            A176371_list.append(p)
        j += 2*i+1
        i += 1
    A176371_list = sorted(A176371_list) # Chai Wah Wu, Dec 17 2015

Extensions

Two more terms 31 and 3163 added by Michel Marcus, Aug 25 2013