A176379 The smallest prime q which stays prime through at least two iterations of q -> := 2 * q + prime(n+1).
2, 7, 2, 31, 2, 7, 11, 7, 19, 5, 5, 19, 2, 13, 13, 61, 11, 17, 61, 5, 5, 7, 139, 5, 19, 2, 103, 29, 7, 2, 109, 7, 59, 31, 41, 5, 5, 127, 13, 31, 5, 109, 2, 7, 41, 11, 2, 7, 101, 67, 79, 5, 31, 13, 37, 19, 11, 2, 109, 53, 7, 2, 19, 2, 127, 29, 5, 13, 59, 7, 19, 47, 47, 11, 13, 79, 17, 19, 89, 619
Offset: 1
Examples
n=1, prime(n+1) = 3: checking q=2: 2 * 2 + 3 = 7, 2 * 7 + 3 = 17, q=2 is first term. n=2: checking q=7: 2 * 7 + 5 = 19, 2 * 19 + 5 = 43, 7 is 2nd term. n=3: checking q=2: 2 * 2 + 7 = 11, 2 * 11 + 7 = 29, 2 is 3rd term.
References
- Joe Buhler, Algorithmic Number Theory, Third International Symposium, ANTS-III, Springer New York, 1998.
- R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, 1994.
- Paulo Ribenboim, Die Welt der Primzahlen, Geheimnisse und Rekorde, Springer-Verlag GmbH & Co. KG, 2006.
Programs
-
Maple
A176379 := proc(n) pk1 := ithprime(n+1) ; for pidx from 1 do p := ithprime(pidx) ; pitr := 2*p+pk1 ; if not isprime(pitr) then next ; end if; pitr := 2*pitr+pk1 ; if not isprime(pitr) then next ; else return p ; end if; end do: end proc: seq(A176379(n),n=1..20) ; # R. J. Mathar, May 21 2025
Formula
a(n) = smallest prime q such that 2*q+prime(n+1) is prime and 2*(2*q+prime(n+1))+prime(n+1) is also prime.
Comments