A176431 Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of binary trees with n leaves and 2k leaves on the bottom level (n>=2, k>=1).
1, 1, 1, 1, 2, 1, 3, 2, 5, 3, 1, 9, 5, 1, 1, 16, 9, 2, 1, 28, 16, 4, 2, 50, 28, 7, 4, 89, 50, 12, 7, 1, 159, 89, 22, 12, 2, 1, 285, 159, 39, 22, 3, 2, 510, 285, 70, 39, 22, 3, 1
Offset: 2
Examples
Triangle begins: 1 1 1 1 2 1 3 2 5 3 1 9 5 1 1 16 9 2 1 28 16 4 2 50 28 7 4 89 50 12 7 1 159 89 22 12 2 1 285 159 39 22 3 2 510 285 70 39 22 3 1
References
- J. Paschke et al., Computing and estimating the number of n-ary Huffman sequences of a specified length, Discrete Math., 311 (2011), 1-7.