cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002573 Restricted partitions.

Original entry on oeis.org

0, 1, 1, 2, 4, 7, 12, 22, 39, 70, 126, 225, 404, 725, 1299, 2331, 4182, 7501, 13458, 24145, 43316, 77715, 139430, 250152, 448808, 805222, 1444677, 2591958, 4650342, 8343380, 14969239, 26856992, 48185362, 86451602, 155106844, 278284440, 499283177, 895787396, 1607174300, 2883507098
Offset: 1

Views

Author

Keywords

Comments

Number of compositions n=p(1)+p(2)+...+p(m) with p(1)=2 and p(k) <= 2*p(k+1), see example. [Joerg Arndt, Dec 18 2012]

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(8)=22 compositions 8=p(1)+p(2)+...+p(m) with p(1)=2 and p(k) <= 2*p(k+1):
[ 1]  [ 2 1 1 1 1 1 1 ]
[ 2]  [ 2 1 1 1 1 2 ]
[ 3]  [ 2 1 1 1 2 1 ]
[ 4]  [ 2 1 1 2 1 1 ]
[ 5]  [ 2 1 1 2 2 ]
[ 6]  [ 2 1 2 1 1 1 ]
[ 7]  [ 2 1 2 1 2 ]
[ 8]  [ 2 1 2 2 1 ]
[ 9]  [ 2 1 2 3 ]
[10]  [ 2 2 1 1 1 1 ]
[11]  [ 2 2 1 1 2 ]
[12]  [ 2 2 1 2 1 ]
[13]  [ 2 2 2 1 1 ]
[14]  [ 2 2 2 2 ]
[15]  [ 2 2 3 1 ]
[16]  [ 2 2 4 ]
[17]  [ 2 3 1 1 1 ]
[18]  [ 2 3 1 2 ]
[19]  [ 2 3 2 1 ]
[20]  [ 2 3 3 ]
[21]  [ 2 4 1 1 ]
[22]  [ 2 4 2 ]
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of the triangle in A176431.

Programs

  • Maple
    v := proc(c,d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i,d-c),i=1..2*c); fi; end; [ seq(v(2,n), n=1..50) ];
  • Mathematica
    v[c_, d_] :=  v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d - c], {i, 1, 2*c}]]]; a[n_] := v[2, n]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Jan 30 2012, after Maple *)

A176452 Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of ternary trees with 2n+1 leaves and 3k leaves on the bottom level (n>=1, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 7, 4, 2, 13, 7, 4, 1, 25, 13, 7, 2, 1, 48, 25, 13, 3, 2, 1, 92, 48, 25, 6, 3, 2, 176, 92, 48, 12, 6, 3, 1, 338, 176, 92, 23, 12, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Examples

			Triangle begins:
1
1
1 1
2 1 1
4 2 1
7 4 2
13 7 4 1
25 13 7 2 1
48 25 13 3 2 1
92 48 25 6 3 2
176 92 48 12 6 3 1
338 176 92 23 12 6 1
		

References

  • J. Paschke et al., Computing and estimating the number of n-ary Huffman sequences of a specified length, Discrete Math., 311 (2011), 1-7.

Crossrefs

Cf. A176431. A176463. Leading column is A176485.

A176463 Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of ternary trees with 3n+1 leaves and 4k leaves on the bottom level (n>=1, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 15, 8, 4, 2, 29, 15, 8, 4, 1, 57, 29, 15, 8, 2, 1, 112, 57, 29, 15, 4, 2, 1, 220, 112, 57, 29, 7, 4, 2
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Examples

			Triangle begins:
1
1
1 1
2 1 1
4 2 1 1
8 4 2 1
15 8 4 2
29 15 8 4 1
57 29 15 8 2 1
112 57 29 15 4 2 1
220 112 57 29 7 4 2
		

Crossrefs

Cf. A176431, A176452, A194628 - A194633. Leading column gives A176503.
Showing 1-3 of 3 results.