cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176485 First column of triangle in A176452.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 13, 25, 48, 92, 176, 338, 649, 1246, 2392, 4594, 8823, 16945, 32545, 62509, 120060, 230598, 442910, 850701, 1633948, 3138339, 6027842, 11577747, 22237515, 42711863, 82037200, 157569867, 302646401, 581296715, 1116503866, 2144482948, 4118935248, 7911290530
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1), see example. [Joerg Arndt, Dec 18 2012]
Row 2 of Table 1 of Elsholtz, row 1 being A002572. - Jonathan Vos Post, Aug 30 2011

Examples

			From _Joerg Arndt_, Dec 18 2012: (Start)
There are a(7+1)=25 compositions 7=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 3*p(k+1):
[ 1]  [ 1 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 1 2 ]
[ 3]  [ 1 1 1 1 2 1 ]
[ 4]  [ 1 1 1 1 3 ]
[ 5]  [ 1 1 1 2 1 1 ]
[ 6]  [ 1 1 1 2 2 ]
[ 7]  [ 1 1 1 3 1 ]
[ 8]  [ 1 1 2 1 1 1 ]
[ 9]  [ 1 1 2 1 2 ]
[10]  [ 1 1 2 2 1 ]
[11]  [ 1 1 2 3 ]
[12]  [ 1 1 3 1 1 ]
[13]  [ 1 1 3 2 ]
[14]  [ 1 2 1 1 1 1 ]
[15]  [ 1 2 1 1 2 ]
[16]  [ 1 2 1 2 1 ]
[17]  [ 1 2 1 3 ]
[18]  [ 1 2 2 1 1 ]
[19]  [ 1 2 2 2 ]
[20]  [ 1 2 3 1 ]
[21]  [ 1 2 4 ]
[22]  [ 1 3 1 1 1 ]
[23]  [ 1 3 1 2 ]
[24]  [ 1 3 2 1 ]
[25]  [ 1 3 3 ]
(End)
		

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[2n-1, 1, 3];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */
    N=66;  q='q+O('q^N);
    t=3;  /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503  */
    L=2 + 2*ceil( log(N) / log(t) );
    f(k) = (1-t^k)/(1-t);
    la(j) = prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );
    nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );
    dn=sum(j=0, L, (-1)^j * la(j) );
    gf = nm / dn;
    Vec( gf )
    /* Joerg Arndt, Dec 27 2012 */

Formula

a(n) = A294775(n-1,2). - Alois P. Heinz, Nov 08 2017

Extensions

Extended by Jonathan Vos Post, Aug 30 2011
Added terms beyond a(20)=62509, Joerg Arndt, Dec 18 2012.

A176431 Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of binary trees with n leaves and 2k leaves on the bottom level (n>=2, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 5, 3, 1, 9, 5, 1, 1, 16, 9, 2, 1, 28, 16, 4, 2, 50, 28, 7, 4, 89, 50, 12, 7, 1, 159, 89, 22, 12, 2, 1, 285, 159, 39, 22, 3, 2, 510, 285, 70, 39, 22, 3, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Examples

			Triangle begins:
1
1
1 1
2 1
3 2
5 3 1
9 5 1 1
16 9 2 1
28 16 4 2
50 28 7 4
89 50 12 7 1
159 89 22 12 2 1
285 159 39 22 3 2
510 285 70 39 22 3 1
		

References

  • J. Paschke et al., Computing and estimating the number of n-ary Huffman sequences of a specified length, Discrete Math., 311 (2011), 1-7.

Crossrefs

Cf. A176452, A176463. First three columns are A002572 (twice), A002573.

A176463 Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of ternary trees with 3n+1 leaves and 4k leaves on the bottom level (n>=1, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 15, 8, 4, 2, 29, 15, 8, 4, 1, 57, 29, 15, 8, 2, 1, 112, 57, 29, 15, 4, 2, 1, 220, 112, 57, 29, 7, 4, 2
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

Examples

			Triangle begins:
1
1
1 1
2 1 1
4 2 1 1
8 4 2 1
15 8 4 2
29 15 8 4 1
57 29 15 8 2 1
112 57 29 15 4 2 1
220 112 57 29 7 4 2
		

Crossrefs

Cf. A176431, A176452, A194628 - A194633. Leading column gives A176503.
Showing 1-3 of 3 results.