cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A176475 The coefficients (times n!) of the expansion of the sum {k=1 to Inf.} of Tan(x^n).

Original entry on oeis.org

0, 1, 2, 8, 24, 136, 960, 5312, 40320, 491776, 4112640, 40270592, 638668800, 6249389056, 91883151360, 1919826163712, 20922789888000, 355897293438976, 8676514912665600, 121674189293944832, 2757288942600192000
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Range[0, 25]! CoefficientList[ Series[ Sum[ Tan[x^n], {n, 35}], {x, 0, 25}], x]

A176473 The coefficients (times n!) of the expansion of the sum {k=1 to Inf.} of Sin(x^n).

Original entry on oeis.org

0, 1, 2, 5, 24, 121, 600, 5039, 40320, 302401, 3659040, 39916799, 399168000, 6227020801, 87160993920, 1100625926399, 20922789888000, 355687428096001, 5335329064665600, 121645100408831999, 2453176191578112000
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Range[0, 25]! CoefficientList[ Series[ Sum[ Sin[x^n], {n, 35}], {x, 0, 25}], x]

A330255 Expansion of e.g.f. Sum_{k>=1} (cosh(x^k) - 1) (even powers only).

Original entry on oeis.org

1, 13, 361, 21841, 1814401, 260124481, 43589145601, 11333696774401, 3210079038566401, 1317822591538252801, 562000363888803840001, 336953340897297630105601, 201645730563302817792000001, 165147853334842304408401920001, 132994909752412012763531673600001
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Sum[Cosh[x^k] - 1, {k, 1, nmax}], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}] // Rest
    Table[(2 n)! DivisorSum[n, 1/(2 #)! &], {n, 1, 15}]

Formula

E.g.f.: Sum_{k>=1} x^(2*k) / ((2*k)! * (1 - x^(2*k))) (even powers only).
a(n) = (2*n)! * Sum_{d|n} 1 / (2*d)!.

A330528 Expansion of e.g.f. Sum_{k>=1} (sec(x^k) - 1) (even powers only).

Original entry on oeis.org

1, 17, 421, 29945, 1864921, 382577645, 43788506581, 15558403000145, 3746015060385841, 1757547389533786325, 562069712763196977901, 516878970296221633758905, 201649817635812110915892361, 216661054181289983631892988285
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 14; Table[(CoefficientList[Series[Sum[(Sec[x^k] - 1), {k, 1, nmax}], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}] // Rest
    Table[(2 n)! DivisorSum[n, Abs[EulerE[2 #]]/(2 #)! &], {n, 1, 14}]

Formula

a(n) = (2*n)! * Sum_{d|n} A000364(d) / (2*d)!.

A331338 E.g.f.: Sum_{k>=1} (1 - sech(x^k)) (even powers only).

Original entry on oeis.org

1, 7, 421, 10375, 1864921, 177588115, 43788506581, 5364386887855, 3746015060385841, 743097477083711275, 562069712763196977901, 208700966175150043937095, 201649817635812110915892361, 89621739407126401163202051715, 158792595367325562826629059282821
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Sum[1 - Sech[x^k], {k, 1, nmax}], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}] // Rest
    Table[-(2 n)! DivisorSum[n, EulerE[2 #]/(2 #)! &], {n, 1, 15}]

Formula

a(n) = -(2*n)! * Sum_{d|n} A028296(d) / (2*d)!.
Showing 1-5 of 5 results.