A176484
Triangle t(n,m) read by rows: t(n,n)= 1, t(n,m) = (-1)^(n+m)*(m+1), 0<=m
1, -1, 1, 1, -2, 1, -1, 2, -3, 1, 1, -2, 3, -4, 1, -1, 2, -3, 4, -5, 1, 1, -2, 3, -4, 5, -6, 1, -1, 2, -3, 4, -5, 6, -7, 1, 1, -2, 3, -4, 5, -6, 7, -8, 1, -1, 2, -3, 4, -5, 6, -7, 8, -9, 1, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 1
Offset: 0
Examples
1; -1, 1; 1, -2, 1; -1, 2, -3, 1; 1, -2, 3, -4, 1; -1, 2, -3, 4, -5, 1; 1, -2, 3, -4, 5, -6, 1; -1, 2, -3, 4, -5, 6, -7, 1; 1, -2, 3, -4, 5, -6, 7, -8, 1; -1, 2, -3, 4, -5, 6, -7, 8, -9, 1; 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 1;
Programs
-
Mathematica
p[x, 0] = 1; p[x_, n_] := p[x, n] = x^n - Sum[(-1)^(i + Mod[n, 2])*i*x^(i - 1), {i, 1, n}]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]
Formula
t(n,m) = [x^m] (x^n - sum_{j=1..n} (-1)^(j+(n mod 2)) *j*x^(j-1) ) .
Comments