A176488 Triangle T(n,k) = A008292(n+1,k+1) + A176487(n,k) - 1, 0<=k<=n.
1, 1, 1, 1, 8, 1, 1, 23, 23, 1, 1, 54, 136, 54, 1, 1, 117, 612, 612, 117, 1, 1, 244, 2395, 4850, 2395, 244, 1, 1, 499, 8605, 31271, 31271, 8605, 499, 1, 1, 1010, 29242, 176522, 312448, 176522, 29242, 1010, 1, 1, 2033, 95714, 910466, 2620832, 2620832, 910466
Offset: 0
Examples
1; 1, 1; 1, 8, 1; 1, 23, 23, 1; 1, 54, 136, 54, 1; 1, 117, 612, 612, 117, 1; 1, 244, 2395, 4850, 2395, 244, 1; 1, 499, 8605, 31271, 31271, 8605, 499, 1; 1, 1010, 29242, 176522, 312448, 176522, 29242, 1010, 1; 1, 2033, 95714, 910466, 2620832, 2620832, 910466, 95714, 2033, 1; 1, 4080, 305317, 4407094, 19476436, 31448746, 19476436, 4407094, 305317, 4080, 1;
Programs
-
Maple
A176488 := proc(n,k) A008292(n+1,k+1)+A176487(n,k)-1 ; end proc: # R. J. Mathar, Jun 16 2015
-
Mathematica
<< DiscreteMath`Combinatorica`; t[n_, m_, 0] := Binomial[n, m]; t[n_, m_, 1] := Eulerian[1 + n, m]; t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 1] + t[n, m, q - 2] - 1; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
Comments