A176489 Triangle T(n,k) = A176487(n,k)+A176488(n,k)-1 read by rows 0<=k<=n.
1, 1, 1, 1, 12, 1, 1, 35, 35, 1, 1, 82, 206, 82, 1, 1, 177, 922, 922, 177, 1, 1, 368, 3599, 7284, 3599, 368, 1, 1, 751, 12917, 46923, 46923, 12917, 751, 1, 1, 1518, 43876, 264810, 468706, 264810, 43876, 1518, 1, 1, 3053, 143588, 1365740, 3931310
Offset: 0
Examples
1; 1, 1; 1, 12, 1; 1, 35, 35, 1; 1, 82, 206, 82, 1; 1, 177, 922, 922, 177, 1; 1, 368, 3599, 7284, 3599, 368, 1; 1, 751, 12917, 46923, 46923, 12917, 751, 1; 1, 1518, 43876, 264810, 468706, 264810, 43876, 1518, 1; 1, 3053, 143588, 1365740, 3931310, 3931310, 1365740, 143588, 3053, 1; 1, 6124, 457997, 6610700, 29214758, 47173244, 29214758, 6610700, 457997, 6124, 1;
Programs
-
Maple
A176489 := proc(n,k) A176487(n,k)+A176488(n,k)-1 ; end proc: # R. J. Mathar, Jun 16 2015
-
Mathematica
<< DiscreteMath`Combinatorica`; t[n_, m_, 0] := Binomial[n, m]; t[n_, m_, 1] := Eulerian[1 + n, m]; t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 1] + t[n, m, q - 2] - 1; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
Comments