A176501 a(n) = Farey(m; I) where m = Fibonacci(n + 1) and I = [1/n, 1].
1, 2, 4, 9, 19, 50, 122, 317, 837, 2213, 5758, 15236, 40028, 105079, 276627, 727409, 1910685, 5020094, 13180380, 34600740, 90814431, 238288480, 625111687, 1639676484, 4300183922, 11275936787, 29564497466, 77507123132, 203175049457, 532552499826, 1395790412496
Offset: 1
Examples
n = 5, I = [1/5, 1], m = Fibonacci(5 + 1) = 8, Farey(8) = 23, Farey(8; I) = 19
Links
- Antoine Mathys, Table of n, a(n) for n = 1..40
- Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000).
- Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (20 April 2010).
- Sameen Ahmed Khan, Mathematica notebook
- Hugo Pfoertner, Ratio for series-parallel networks, Plot2 of A048211(n)/a(n).
- Hugo Pfoertner, Ratio for networks with bridges, Plot2 of A174283(n)/a(n).
- Hugo Pfoertner, Ratio for arbitrary networks, Plot2 of A337517(n)/a(n).
Crossrefs
Programs
-
Mathematica
a[n_ /; n<4] := 2^(n-1); a[n_] := Module[{m = Fibonacci[n+1], v}, v = Reap[ Do[Sow[j/i], {i, n+1, m}, {j, 1, (i-1)/n}]][[2, 1]]; Total[ EulerPhi[ Range[m]]] - Length[v // Union]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 23}] (* Jean-François Alcover, Aug 30 2018, after Antoine Mathys *)
-
PARI
farey(n) = sum(i=1, n, eulerphi(i)) + 1; a(n) = my(m=fibonacci(n + 1), count=0); for(b=n+1, m, for(a=1, (b-1)/n, if(gcd(a,b)==1, count++))); farey(m) - 1 - count; \\ Antoine Mathys, May 07 2019
Extensions
a(19)-a(27) from Antoine Mathys, Aug 10 2018
a(28)-a(31) from Antoine Mathys, May 07 2019
Comments