cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176501 a(n) = Farey(m; I) where m = Fibonacci(n + 1) and I = [1/n, 1].

Original entry on oeis.org

1, 2, 4, 9, 19, 50, 122, 317, 837, 2213, 5758, 15236, 40028, 105079, 276627, 727409, 1910685, 5020094, 13180380, 34600740, 90814431, 238288480, 625111687, 1639676484, 4300183922, 11275936787, 29564497466, 77507123132, 203175049457, 532552499826, 1395790412496
Offset: 1

Views

Author

Sameen Ahmed Khan, Apr 21 2010

Keywords

Comments

This sequence arises in the analytically obtained strict upper bound of the set of equivalent resistances formed by any conceivable network (series/parallel or bridge, or non-planar) of n equal resistors. Consequently it provides an strict upper bound of the sequences: A048211, A153588, A174283, A174284, A174285 and A174286. This sequence provides a better strict upper bound than A176499 but is harder to compute. [Corrected by Antoine Mathys, May 07 2019]
From Hugo Pfoertner, Jan 24 2021: (Start)
The claim that this sequence is a strict upper bound for the number of representable resistance values of any conceivable network is wrong. It only applies to purely serial-parallel networks, but it already fails when bridges are allowed, as described in A174283. Even more so if arbitrary nonplanar networks are allowed as in A337517. See the linked illustrations of the respective quotients.
But in contrast to A176499, which at least correctly bounds A048211, the terms a(5), ..., a(9) in this sequence are smaller than the corresponding terms from A048211 (a(n) vs. A048211(n): 19/22, 50/53, 122/131, 317/337, 837/869). (End)

Examples

			n = 5, I = [1/5, 1], m = Fibonacci(5 + 1) = 8, Farey(8) = 23, Farey(8; I) = 19
		

Crossrefs

Programs

  • Mathematica
    a[n_ /; n<4] := 2^(n-1); a[n_] := Module[{m = Fibonacci[n+1], v}, v = Reap[ Do[Sow[j/i], {i, n+1, m}, {j, 1, (i-1)/n}]][[2, 1]]; Total[ EulerPhi[ Range[m]]] - Length[v // Union]];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 23}] (* Jean-François Alcover, Aug 30 2018, after Antoine Mathys *)
  • PARI
    farey(n) = sum(i=1, n, eulerphi(i)) + 1;
    a(n) = my(m=fibonacci(n + 1), count=0); for(b=n+1, m, for(a=1, (b-1)/n, if(gcd(a,b)==1, count++))); farey(m) - 1 - count; \\ Antoine Mathys, May 07 2019

Extensions

a(19)-a(27) from Antoine Mathys, Aug 10 2018
a(28)-a(31) from Antoine Mathys, May 07 2019