A176615 Number of edges in the graph on n vertices, labeled 1 to n, where two vertices are joined just if their labels sum to a perfect square.
0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 49, 52, 55, 57, 59, 61, 63, 65, 68, 71, 74, 77, 80, 83, 86, 89, 91, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 127, 131, 135, 138, 141, 144, 147, 150
Offset: 1
Examples
For n = 7 the graph contains the 4 edges 1-3, 2-7, 3-6, 4-5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= n-> 1+floor(sqrt(2*n-1))-ceil(sqrt(n+1)): a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+b(n)) end: seq(a(n), n=1..100); # Alois P. Heinz, Jan 30 2017
-
Mathematica
a[n_] := Sum[Floor[Sqrt[2k-1]] - Floor[Sqrt[k]], {k, 1, n}]; Table[a[n], {n, 1, 68}] (* Jean-François Alcover, Nov 04 2011, after Pari *)
-
PARI
a(n)=sum(k=1,sqrtint(n+1),ceil(k^2/2)-1)+sum(k=sqrtint(n+1)+1,sqrtint(2*n -1),n-floor(k^2/2))
-
PARI
a(n)=sum(k=1,n,sqrtint(2*k-1)-sqrtint(k))
Formula
Asymptotically, a(n) ~ (2*sqrt(2) - 2)/3 n^(3/2). The error term is probably O(n^(1/2)); O(n) is easily provable.
Comments