cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176677 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=0 and l=-1.

Original entry on oeis.org

1, 1, 1, 2, 5, 14, 41, 123, 375, 1158, 3615, 11393, 36209, 115940, 373709, 1211740, 3949969, 12937612, 42558745, 140547051, 465799527, 1548766044, 5164917003, 17271369744, 57900615135, 194558333460, 655168354935, 2210681734671
Offset: 0

Views

Author

Richard Choulet, Apr 23 2010

Keywords

Comments

a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps at odd levels come in 2 colors. Example: a(5)=14 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 2 paths of shape HUHD, 2 paths of shape UHDH, 4 paths of shape UHHD, and 1 path of each of the shapes HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD. - Emeric Deutsch, May 02 2011

Examples

			a(2)=2*1*1-1=1. a(3)=2*1*1+1^1-1=2. a(4)=2*1*2+2*1*1-1=5.
		

Crossrefs

Cf. A176675.

Programs

  • Maple
    l:=-1: : k := 0 :m :=1:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k,p=0..n)+l:od :
    taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z),z=0,30);seq(d(n),n=0..30);

Formula

G.f.: (1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+j)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, j=-1).
G.f. G=G(z) satisfies the equation z^2*(1-z)*G^2-(1-z)*(1-2*z)*G+1-2*z =0. - Emeric Deutsch, May 02 2011
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(9*n-13)*a(n-2) -4*a(n-3) +4*(-n+4)*a(n-4)=0. - R. J. Mathar, Mar 01 2016