A176679 Conjecturally, numbers j for which f(m) > f(j) for all m > j, where f(k) = H(k) + exp(H(k))*log(H(k)) - sigma(k).
1, 2, 12, 24, 60, 120, 180, 240, 360, 420, 840, 2520, 5040, 7560, 10080, 15120, 20160, 27720, 30240, 32760, 55440, 65520, 83160, 110880, 166320, 196560, 221760, 277200, 332640, 360360, 393120, 415800, 720720, 831600, 942480, 1441440, 2162160
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..84
- Jeffrey C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Amer. Math. Monthly 109 (#6, 2002), 534-543.
Programs
-
Mathematica
(* This is just a naive recomputation of a dozen terms. *) H = HarmonicNumber; f[k_] := H[k] + Exp[H[k]] Log[H[k]] - DivisorSigma[1, k]; okQ[k_] := AllTrue[Range[k+1, 2k], f[#] > f[k]&]; Reap[For[k = 1, k < 10^4, k = If[k >= 60, k+60, k+1], If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Dec 11 2018 *)
Comments