A176699 Fermi-Dirac composite numbers that are not a sum of two Fermi-Dirac primes (A050376).
145, 187, 205, 217, 219, 221, 247, 301, 325, 343, 415, 427, 475, 517, 535, 553, 555, 583, 637, 667, 671, 697, 715, 781, 783, 793, 795, 805, 807, 817, 835, 847, 851, 871, 895, 901, 905, 925, 959, 1003, 1005, 1027, 1045, 1057, 1059, 1075, 1081, 1135, 1141, 1147
Offset: 1
Keywords
Examples
291 = 3*97 is a Fermi-Dirac composite number, equal to 289+2, the sum of two Fermi-Dirac primes. Therefore 291 is not in the sequence.
References
- Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature Sciences 4 (1996), 28-43.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Simon Litsyn and Vladimir Shevelev, On factorization of integers with restrictions on the exponents, INTEGERS: El. J. of Combin. Number Theory, 7 (2007), Article #A33, 1-35.
Programs
-
Maple
A064547 := proc(n) f := ifactors(n)[2] ; a := 0 ; for p in f do a := a+wt(op(2, p)) ; end do: a ; end proc: A050376 := proc(n) local a; if n = 1 then 2; else for a from procname(n-1)+1 do if A064547(a) = 1 then return a; end if; end do: end if; end proc: isA176699 := proc(n) local pi,q ; if A064547(n) < 2 then return false; end if; for pi from 1 do if A050376(pi) > n then return true; else q := n-A050376(pi) ; if A064547(q) = 1 then return false; end if; end if; end do; end proc: for n from 2 to 1000 do if isA176699(n) then printf("%d,\n",n) ; end if; end do: # R. J. Mathar, Jun 16 2010
-
Mathematica
pow2Q[n_] := n == 2^IntegerExponent[n, 2]; fdpQ[n_] := PrimePowerQ[n] && pow2Q[FactorInteger[n][[1, 2]]]; With[{m = 1200}, p = Select[Range[m], fdpQ]; Complement[Range[m], Join[{1}, p, Plus @@@ Subsets[p, {2}]]]] (* Amiram Eldar, Oct 05 2023 *)
Extensions
Edited and extended by R. J. Mathar, Jun 16 2010
More terms from Amiram Eldar, Oct 05 2023
Comments