cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176706 Primes p such that the p-th semiprime divided by the sum of the digits of p is a prime.

Original entry on oeis.org

2, 3, 7, 23, 131, 313, 353, 397, 887, 1307, 1439, 1783, 2003, 2027, 2069, 2111, 2593, 2777, 3541, 4111, 4201, 4889, 5653, 5897, 6421, 6823, 8353, 8447, 9721, 9749, 11159, 11483, 12011, 12073, 12251, 13313, 14323, 14431, 15083, 15131, 15887, 17029
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 24 2010

Keywords

Examples

			131 is a term because the 131st semiprime is 415, the sum of the digits of 131 is 5, and 415/5 = 83, which is prime.
		

Crossrefs

Programs

  • Maple
    isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc:
    A001358 := proc(n) option remember ; if n = 1 then return 4 ; else for a from procname(n-1)+1 do if isA001358(a) then return a; end if; end do; end if; end proc:
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc:
    isA176706 := proc(n) if isprime(n) then r := A001358(n)/A007953(n) ; if type(r,'integer') then isprime(r) ; else false; end if; else false; end if; end proc:
    for n from 1 to 2000 do p := ithprime(n) ; if isA176706(p) then printf("%d,",p) ; end if; end do: # R. J. Mathar, Apr 24 2010
  • Mathematica
    Module[{semis=Select[Range[100000],PrimeOmega[#]==2&]},Select[ Prime[ Range[ PrimePi[ Length[semis]]]], PrimeQ[semis[[#]]/ Total[ IntegerDigits[ #]]]&]] (* Harvey P. Dale, May 10 2014 *)

Extensions

Keyword:base added, sequence extended by R. J. Mathar, Apr 24 2010